Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Survey on Progressive Visualization

Published: 25 December 2023 Publication History

Abstract

Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.

References

[1]
W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of Time-Oriented Data. Berlin, Germany: Springer, 2011.
[2]
M. Angelini, T. May, G. Santucci, and H. Schulz, “On quality indicators for progressive visual analytics,” in Proc. 10th Int. EuroVis Workshop Vis. Analytics, 2019, pp. 25–29.
[3]
M. Angelini and G. Santucci, “Modeling incremental visualizations,” in Proc. Int. EuroVis Workshop Vis. Analytics, M. Pohl and H. Schumann, Eds., 2013.
[4]
M. Angelini and G. Santucci, “On visual stability and visual consistency for progressive visual analytics,” in Proc. Int. Conf. Inf. Vis. Theory Appl., 2017, pp. 335–341.
[5]
M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz, “A review and characterization of progressive visual analytics,” Informatics, vol. 5, no. 3, pp. 31, 2018.
[6]
S. Armstrong, K. Bruhwiler, and S. L. Pallickara, “Rapid, progressive sub-graph explorations for interactive visual analytics over large-scale graph datasets,” in Proc. IEEE/ACM 6th Int. Conf. Big Data Comput. Appl. Technol., 2019, pp. 1–10.
[7]
S. K. Badam, N. Elmqvist, and J. Fekete, “Steering the craft: UI elements and visualizations for supporting progressive visual analytics,” Comput. Graph. Forum, vol. 36, no. 3, pp. 491–502, 2017.
[8]
F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and survey of dynamic graph visualization,” Comput. Graph. Forum, vol. 36, no. 1, pp. 133–159, 2017.
[9]
M. Behrisch, B. Bach, N. H. Riche, T. Schreck, and J. Fekete, “Matrix reordering methods for table and network visualization,” Comput. Graph. Forum, vol. 35, no. 3, pp. 693–716, 2016.
[10]
C. Bi, L. Yang, Y. Duan, and Y. Shi, “A survey on visualization of tensor field,” J. Vis., vol. 22, no. 3, pp. 641–660, 2019.
[11]
A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[12]
L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.
[13]
S. P. Callahan, L. Bavoil, V. Pascucci, and C. T. Silva, “Progressive volume rendering of large unstructured grids,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 1307–1314, Sep./Oct. 2006.
[14]
X. Chen, J. Zhang, C. Fu, J. Fekete, and Y. Wang, “Pyramid-based scatterplots sampling for progressive and streaming data visualization,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 1, pp. 593–603, Jan. 2022.
[15]
Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist, “DataSite: Proactive visual data exploration with computation of insight-based recommendations,” Inf. Vis., vol. 18, no. 2, pp. 251–267, 2019.
[16]
I. Demir and R. Westermann, “Progressive high-quality response surfaces for visually guided sensitivity analysis,” Comput. Graph. Forum, vol. 32, no. 3, pp. 21–30, 2013.
[17]
D. J. Duke, M. Wallace, R. Borgo, and C. Runciman, “Fine-grained visualization pipelines and lazy functional languages,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 973–980, Sep./Oct. 2006.
[18]
G. Dzemyda, O. Kurasova, and J. Zilinskas, “Multidimensional data visualization,” Optim. Appl., vol. 75, no. 122, pp. 10–5555, 2013.
[19]
N. Elmqvist and J. Fekete, “Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 3, pp. 439–454, May/Jun. 2010.
[20]
J.-D. Fekete, D. Fisher, A. Nandi, and M. Sedlmair, “Progressive data analysis and visualization (dagstuhl seminar 18411),” Dagstuhl Rep., vol. 8, no. 10, pp. 1–40, 2019.
[21]
J.-D. Fekete and R. Primet, “Progressive analytics: A computation paradigm for exploratory data analysis,” 2016.
[22]
D. Fisher, S. M. Drucker, and A. C. König, “Exploratory visualization involving incremental, approximate database queries and uncertainty,” IEEE Comput. Graph. Appl., vol. 32, no. 4, pp. 55–62, Jul./Aug. 2012.
[23]
D. Fisher, I. O. Popov, S. M. Drucker, and M. C. Schraefel, “Trust me, i’m partially right: Incremental visualization lets analysts explore large datasets faster,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2012, pp. 1673–1682.
[24]
S. Frey and T. Ertl, “Progressive direct volume-to-volume transformation,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 921–930, Jan. 2017.
[25]
S. Frey, F. Sadlo, K. Ma, and T. Ertl, “Interactive progressive visualization with space-time error control,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2397–2406, Dec. 2014.
[26]
Y. Frishman and A. Tal, “Online dynamic graph drawing,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 4, pp. 727–740, Jul./Aug. 2008.
[27]
F. Giachelle and G. Silvello, “A progressive visual analytics tool for incremental experimental evaluation,” in Proc. Italian Inf. Retrieval Workshop, 2019, pp. 2–5.
[28]
J. M. Gilbert and R. W. Brodersen, “Globally progressive interactive web delivery,” in Proc. IEEE Conf. Comput. Commun., 1999, pp. 1291–1299.
[29]
M. Glueck, A. Khan, and D. J. Wigdor, “Dive in!: Enabling progressive loading for real-time navigation of data visualizations,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2014, pp. 561–570.
[30]
H. Griethe and H. Schumann, “The visualization of uncertain data: Methods and problems,” in Proc. Simul. Visualisierung, SCS Publishing House, 2006, pp. 143–156.
[31]
C. Harrison, A. K. Dey, and S. E. Hudson, “Evaluation of progressive image loading schemes,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2010, pp. 1549–1552.
[32]
A. Hayashi, T. Matsubayashi, T. Hoshide, and T. Uchiyama, “Initial positioning method for online and real-time dynamic graph drawing of time varying data,” in Proc. 17th Int. Conf. Inf. Vis., 2013, pp. 435–444.
[33]
J. Heinrich, S. Bachthaler, and D. Weiskopf, “Progressive splatting of continuous scatterplots and parallel coordinates,” Comput. Graph. Forum, vol. 30, no. 3, pp. 653–662, 2011.
[34]
J. M. Hellerstein et al., “Interactive data analysis: The control project,” Computer, vol. 32, no. 8, pp. 51–59, Aug. 1999.
[35]
J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1997, pp. 171–182.
[36]
E. G. Hetzler, V. L. Crow, D. A. Payne, and A. Turner, “Turning the bucket of text into a pipe,” in Proc. IEEE Symp. Inf. Vis., 2005, pp. 89–94.
[37]
M. Hogräfer, M. Angelini, G. Santucci, and H. Schulz, “Steering-by-example for progressive visual analytics,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 6, pp. 96:1–96:26, 2022.
[38]
M. Hogräfer and H.-J. Schulz, “Tailorable sampling for progressive visual analytics,” IEEE Trans. Vis. Comput. Graph., to be published.
[39]
M. Hogräfer, J. Burkhardt, and H.-J. Schulz, “A pipeline for tailored sampling for progressive visual analytics,” in Proc. Int. EuroVis Workshop Vis. Analytics, 2022, pp. 49–53.
[40]
T. Höllt et al., “Cytosplore: Interactive immune cell phenotyping for large single-cell datasets,” Comput. Graph. Forum, vol. 35, no. 3, pp. 171–180, 2016.
[41]
J. Im, F. G. Villegas, and M. J. McGuffin, “VisReduce: Fast and responsive incremental information visualization of large datasets,” in Proc. IEEE Int. Conf. Big Data, 2013, pp. 25–32.
[42]
A. Jena, U. Engelke, T. Dwyer, V. Raiamanickam, and C. Paris, “Uncertainty visualisation: An interactive visual survey,” in Proc. IEEE Pac. Vis. Symp., 2020, pp. 201–205.
[43]
J. Jo, W. Kim, S. Yoo, B. H. Kim, and J. Seo, “SwiftTuna: Responsive and incremental visual exploration of large-scale multidimensional data,” in Proc. IEEE Pac. Vis. Symp., 2017, pp. 131–140.
[44]
J. Jo, S. L’Yi, B. Lee, and J. Seo, “ProReveal: Progressive visual analytics with safeguards,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 7, pp. 3109–3122, Jul. 2021.
[45]
J. Jo, J. Seo, and J. Fekete, “PANENE: A progressive algorithm for indexing and querying approximate k-nearest neighbors,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 2, pp. 1347–1360, Feb. 2020.
[46]
M. Kamarianakis, A. Protopsaltis, D. Angelis, M. Tamiolakis, and G. Papagiannakis, “Progressive tearing and cutting of soft-bodies in high-performance virtual reality,” 2022,.
[47]
D. A. Keim, “Information visualization and visual data mining,” IEEE Trans. Vis. Comput. Graph., vol. 8, no. 1, pp. 1–8, First Quarter 2002.
[48]
S. P. Kesavan et al., “A visual analytics framework for reviewing streaming performance data,” in Proc. IEEE Pac. Vis. Symp., 2020, pp. 206–215.
[49]
H. Kim, J. Choo, C. Lee, H. Lee, C. K. Reddy, and H. Park, “PIVE: Per-iteration visualization environment for real-time interactions with dimension reduction and clustering,” in Proc. AAAI Conf. Artif. Intell., 2017, pp. 1001–1009.
[50]
H. Ko, J. Jo, and J. Seo, “Progressive uniform manifold approximation and projection,” in Proc. Eurographics Conf. Vis., 2020, pp. 133–137.
[51]
M.-J. Kraak and F. Ormeling, Cartography: Visualization of Geospatial Data. Boca Raton, FL, USA: CRC Press, 2020.
[52]
B. C. Kwon, J. Verma, P. J. Haas, and Ç. Demiralp, “Sampling for scalable visual analytics,” IEEE Comput. Graph. Appl., vol. 37, no. 1, pp. 100–108, Jan./Feb. 2017.
[53]
H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale, “Empirical studies in information visualization: Seven scenarios,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 9, pp. 1520–1536, Sep. 2012.
[54]
D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refinement algorithm for volume rendering,” in Proc. 18th Annu. Conf. Comput. Graph. Interactive Techn., 1991, pp. 285–288.
[55]
J. K. Li and K. Ma, “P5: Portable progressive parallel processing pipelines for interactive data analysis and visualization,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 1151–1160, Jan. 2020.
[56]
D. Liu, P. Xu, and L. Ren, “TPFlow: Progressive partition and multidimensional pattern extraction for large-scale spatio-temporal data analysis,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 1–11, Jan. 2019.
[57]
S. Liu, J. Yin, X. Wang, W. Cui, K. Cao, and J. Pei, “Online visual analytics of text streams,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 11, pp. 2451–2466, Nov. 2016.
[58]
Z. Liu, A. Finkelstein, and K. Li, “Improving progressive view-dependent isosurface propagation,” Comput. Graph., vol. 26, no. 2, pp. 209–218, 2002.
[59]
Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual analysis,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2122–2131, Dec. 2014.
[60]
D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner, Level of Detail for 3D Graph.. Burlington, MA, USA: Morgan Kaufmann, 2003.
[61]
R. Machiraju, J. E. Fowler, D. Thompson, B. Soni, and W. Schroeder, “EVITA–efficient visualization and interrogation of tera-scale data,” in Data Mining for Scientific and Engineering Applications, Berlin, Germany: Springer, 2001, pp. 257–279.
[62]
T. May, S. Schneider, M. Schmidt, and V. Luckas, “Fast scalar- & vectorfield visualization using a new progressive grid class,” in Proc. Simul. Visualisierung, 2003, pp. 89–102.
[63]
L. Micallef et al., “The human user in progressive visual analytics,” in Proc. Eurographics Conf. Vis., 2019, pp. 19–23.
[64]
D. Moritz, D. Fisher, B. Ding, and C. Wang, “Trust, but verify: Optimistic visualizations of approximate queries for exploring Big Data,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2017, pp. 2904–2915.
[65]
T. Munzner, Visualization Analysis and Design. Natick, MA, USA: A. K Peters, 2014.
[66]
S. Muthukrishnan, “Data streams: Algorithms and applications,” Found. Trends Theor. Comput. Sci., vol. 1, no. 2, pp. 117–236, 2005.
[67]
J. Nielsen, “Powers of 10: Time scales in user experience.” Oct. 2009. Accessed: Dec. 5, 2023. [Online]. Available: https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
[68]
C. Nobre, M. D. Meyer, M. Streit, and A. Lex, “The state of the art in visualizing multivariate networks,” Comput. Graph. Forum, vol. 38, no. 3, pp. 807–832, 2019.
[69]
L. Padilla, M. Kay, and J. Hullman, Uncertainty Visualization. Hoboken, NJ, USA: Wiley, 2021, pp. 1–18.
[70]
A. Pang and N. Alper, “Mix&match: A construction kit for visualization,” in Proc. Vis., 1994, pp. 302–309.
[71]
A. Patil, G. Richer, C. Jermaine, D. Moritz, and J. Fekete, “Studying early decision making with progressive bar charts,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 1, pp. 407–417, Jan. 2023.
[72]
N. Pezzotti, T. Höllt, B. P. F. Lelieveldt, E. Eisemann, and A. Vilanova, “Hierarchical stochastic neighbor embedding,” Comput. Graph. Forum, vol. 35, no. 3, pp. 21–30, 2016.
[73]
N. Pezzotti, T. Höllt, J. C. van Gemert, B. P. F. Lelieveldt, E. Eisemann, and A. Vilanova, “DeepEyes: Progressive visual analytics for designing deep neural networks,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 98–108, Jan. 2018.
[74]
N. Pezzotti, B. P. F. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann, and A. Vilanova, “Approximated and user steerable tSNE for progressive visual analytics,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 7, pp. 1739–1752, Jul. 2017.
[75]
M. Procopio, A. Mosca, C. Scheidegger, E. Wu, and R. Chang, “Impact of cognitive biases on progressive visualization,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 9, pp. 3093–3112, Sep. 2022.
[76]
M. Procopio, C. Scheidegger, E. Wu, and R. Chang, “Selective wander join: Fast progressive visualizations for data joins,” Informatics, vol. 6, no. 1, pp. 14, 2019.
[77]
S. Rahman et al., “I’ve seen “enough”: Incrementally improving visualizations to support rapid decision making,” Proc. VLDB Endowment, vol. 10, no. 11, pp. 1262–1273, 2017.
[78]
V. Raveneau, J. Blanchard, and Y. Prié, “Progressive sequential pattern mining: Steerable visual exploration of patterns with PPMT,” in Proc. Vis. Data Sci., Oct. 2018.
[79]
R. Rosenbaum and B. Hamann, “Progressive presentation of large hierarchies using treemaps,” in Proc. Int. Symp. Vis. Comput., 2009, pp. 71–80.
[80]
R. Rosenbaum, J. Zhi, and B. Hamann, “Progressive parallel coordinates,” in Proc. IEEE Pac. Vis. Symp., 2012, pp. 25–32.
[81]
D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. P. Ellis, and D. A. Keim, “Knowledge generation model for visual analytics,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1604–1613, Dec. 2014.
[82]
H. Schulz, M. Angelini, G. Santucci, and H. Schumann, “An enhanced visualization process model for incremental visualization,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 7, pp. 1830–1842, Jul. 2016.
[83]
J. Schwank and S. Schöffel, “Visualizing uncertainty in node-link diagrams - A user study,” in Proc. Adv. Usability User Experience, 2017, pp. 495–507.
[84]
Shilpika, T. Fujiwara, N. Sakamoto, J. Nonaka, and K.-L. Ma, “A visual analytics approach for hardware system monitoring with streaming functional data analysis,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 6, pp. 2338–2349, Jun. 2022.
[85]
B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Proc. IEEE Symp. Vis. Lang., 1996, pp. 336–343.
[86]
F. Siddiqui, T. Höllt, and A. Vilanova, “A progressive approach for uncertainty visualization in diffusion tensor imaging,” Comput. Graph. Forum, vol. 40, no. 3, pp. 411–422, 2021.
[87]
M. Sondag, W. Meulemans, C. Schulz, K. Verbeek, D. Weiskopf, and B. Speckmann, “Uncertainty treemaps,” in Proc. IEEE Pac. Vis. Symp., 2020, pp. 111–120.
[88]
D. Song and E. J. Golin, “Fine-grain visualization algorithms in dataflow environments,” in Proc. IEEE Vis., 1993, pp. 126–134.
[89]
C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics: User-driven visual exploration of in-progress analytics,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1653–1662, Dec. 2014.
[90]
Y. Tao and Y. Tang, “Progressive visual analysis of traffic data based on hierarchical topic refinement and detail analysis,” J. Vis., vol. 26, no. 2, pp. 367–384, 2023.
[91]
Tensorflow, “Tensorflow Playground.” 2016. Accessed: Dec. 5, 2023. [Online]. Available: https://playground.tensorflow.org/
[92]
C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser, “Designing progressive and interactive analytics processes for high-dimensional data analysis,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 131–140, Jan. 2017.
[93]
A. Ulmer, D. Sessler, and J. Kohlhammer, “NetCapVis: Web-based progressive visual analytics for network packet captures,” in Proc. IEEE Symp. Vis. Cyber Secur., 2019, pp. 1–10.
[94]
A. Ulmer, D. Sessler, and J. Kohlhammer, “ProBGP: Progressive visual analytics of live BGP updates,” Comput. Graph. Forum, vol. 40, no. 3, pp. 37–48, 2021.
[95]
F. van Ham and A. Perer, ““Search, show context, expand on demand”: Supporting large graph exploration with degree-of-interest,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 953–960, Nov./Dec. 2009.
[96]
R. van Liere, J. D. Mulder, and J. J. van Wijk, “Computational steering,” Future Gener. Comput. Syst., vol. 12, no. 5, pp. 441–450, 1997.
[97]
E. Ventocilla and M. Riveiro, “A model for the progressive visualization of multidimensional data structure,” in Proc. Int. Joint Conf. Comput. Vis. Imag. Comput. Graph., 2019, pp. 203–226.
[98]
J. Vidal, J. Budin, and J. Tierny, “Progressive wasserstein barycenters of persistence diagrams,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 151–161, Jan. 2020.
[99]
J. Vidal, P. Guillou, and J. Tierny, “A progressive approach to scalar field topology,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 6, pp. 2833–2850, Jun. 2021.
[100]
T. von Landesberger et al., “Visual analysis of large graphs: State-of-the-art and future research challenges,” Comput. Graph. Forum, vol. 30, no. 6, pp. 1719–1749, 2011.
[101]
A. Wald, Sequential Analysis. Chelmsford, MA, USA: Courier Corporation, 2004.
[102]
S. R. Wang, R. You, S. Li, Y. S. Chen, and G. P. Wang, “Realtime visualization of hurricane in distributed environment,” Appl. Mechanics Mater., vol. 40, pp. 948–954, 2011.
[103]
Y. Wang et al., “OM3: An ordered multi-level min-max representation for interactive progressive visualization of time series,” Proc. ACM Manag. Data, vol. 1, no. 2, pp. 145:1–145:24, 2023.
[104]
M. Williams and T. Munzner, “Steerable, progressive multidimensional scaling,” in Proc. IEEE Symp. Inf. Vis., 2004, pp. 57–64.
[105]
P. C. Wong, H. Foote, D. Adams, W. Cowley, and J. J. Thomas, “Dynamic visualization of transient data streams,” in Proc. IEEE Symp. Inf. Vis., 2003, pp. 97–104.
[106]
Y. Xiong, B. Dai, and D. Lin, “Move forward and tell: A progressive generator of video descriptions,” in Proc. Eur. Conf. Comput. Vis., Springer, 2018, pp. 489–505.
[107]
P. Yi, Z. Wang, K. Jiang, J. Jiang, and J. Ma, “Progressive fusion video super-resolution network via exploiting non-localspatio-temporal correlations,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 3106–3115.
[108]
E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska, “How progressive visualizations affect exploratory analysis,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 8, pp. 1977–1987, Aug. 2017.
[109]
Y. Zhang, G. Li, R. Yue, J. Liu, and G. Shan, “PEViz: An in situ progressive visual analytics system for ocean ensemble data,” J. Vis., vol. 26, no. 2, pp. 423–440, 2023.
[110]
H. Zhao, H. Zhang, Y. Liu, Y. Zhang, and X. L. Zhang, “Pattern discovery: A progressive visual analytic design to support categorical data analysis,” J. Vis. Lang. Comput., vol. 43, pp. 42–49, 2017.

Recommendations

Comments

Information & Contributors

Information

Published In

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 25 December 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media