Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Disrupting MIMO Communications With Optimal Jamming Signal Design

Published: 01 October 2015 Publication History

Abstract

This paper considers the problem of intelligent jamming attack on a MIMO wireless communication link with a transmitter, a receiver, and an adversarial jammer, each equipped with multiple antennas. We present an optimal jamming signal design, which can maximally disrupt the MIMO transmission when the transceiver adopts an anti-jamming mechanism. In particular, signal-to-jamming-plus-noise ratio (SJNR) at the receiver is used as the anti-jamming reliability metric of the legitimate MIMO transmission. The jamming signal design is developed under the most crucial scenario for the jammer where the legitimate transceiver adopt jointly designed maximum-SJNR transmit beamforming and receive filter to suppress/mitigate the disturbance from the jammer. Under this best anti-jamming scheme, we aim to optimize the jamming signal to minimize the receiver's maximum-SJNR under a given jamming power budget. The optimal jamming signal designs are developed in different cases with accordance to the availability of channel state information (CSI) at the jammer. The analytical approximations of the jamming performance in terms of average maximum-SJNR are also provided. Extensive simulation studies confirm our analytical predictions and illustrate the efficiency of the designed optimal jamming signal on disrupting MIMO communications.

References

[1]
R. A. Poisel, Modern Communications Jamming Principles and Techniques. Boston, MA, USA: Artech House, 2006.
[2]
T. Basar, “ The Gaussian test channel with an intelligent jammer,” IEEE Trans. Inf. Theory, vol. IT-29, no. 1, pp. 152– 157, Jan. 1983.
[3]
T. Basar and Y.-W. Wu, “ A complete characterization of minimax and maximin encoder-decoder policies for communication channels with incomplete statistical description,” IEEE Trans. Inf. Theory, vol. IT-31, no. 4, pp. 482– 489, Jul. 1985.
[4]
R. J. McEliece, Communication in the Presence of Jamming—An Information Theoretic Approach. Vienna, Austria: Springer-Verlag, 1983, pp. 127– 165.
[5]
M. Medard, “ Capacity of correlated jamming channels,” in Proc. 35th Allerton Conf., Monticello, IL, USA, Oct. 1997, pp. 1043– 1052.
[6]
A. Kashyap, T. Basar, and R. Srikant, “ Correlated jamming on MIMO Gaussian fading channels,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2119– 2123, Sep. 2004.
[7]
T. Wang and G. B. Giannakis, “ Mutual information jammer-relay games,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 2, pp. 290– 303, Jun. 2008.
[8]
S. Shafiee and S. Ulukus, “ Capacity of multiple access channels with correlated jamming,” in Proc. IEEE MILCOM, Atlantic City, NJ, USA, Oct. 2005, vol. 1, pp. 218– 224.
[9]
S. Shafiee and S. Ulukus, “ Mutual information games in multi-user channels with correlated jamming,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp. 4598– 4607, Oct. 2009.
[10]
S. N. Diggavi and T. M. Cover, “ The worst additive noise under a covariance constraint,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 3072– 3081, Nov. 2001.
[11]
R. Miller and W. Trappe, “ On the vulnerabilities of CSI in MIMO wireless communication systems,” IEEE Trans. Mobile Comput., vol. 11, no. 8, pp. 1386– 1393, Aug. 2012.
[12]
R. Miller and W. Trappe, “ Subverting MIMO wireless systems by jamming the channel estimation procedure,” in Proc. ACM Conf. Wireless Netw. Security, Hoboken, NJ, USA, Mar. 2010, pp. 19– 24.
[13]
X. Zhou, D. Niyato, and A. Hjørungnes, “ Optimizing training-based transmission against smart jamming,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2644– 655, Jul. 2011.
[14]
H. Pezeshki, X. Zhou, and B. Maham, “ Jamming energy allocation in training-based multiple access systems,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1140– 1143, Jun. 2013.
[15]
A. Bayesteh, M. Ansari, and A. K. Khandani, “ Effect of jamming on the capacity of MIMO channels,” in Proc. 42nd Allerton Conf., Monticello, IL, USA, Oct. 2004, pp. 401– 410.
[16]
M. H. Brady, M. Mohseni, and J. M. Cioffi, “ Spatially-correlated jamming in Gaussian multiple access and broadcast channels,” in Proc. CISS, Princeton, NY, USA, Mar. 2006, pp. 1635– 1639.
[17]
M. R. D. Rodrigues and G. Ramos, “ On multiple-input multiple-output Gaussian channels with arbitrary inputs subject to jamming,” in Proc. IEEE ISIT, Seoul, Korea, Jun. 2009, pp. 2512– 2516.
[18]
E. A. Jorswieck, H. Boche, and M. Weckerle, “ Optimal transmitter and jamming strategies in Gaussian MIMO channels,” in Proc. VTC, Stockholm, Sweden, May 2005, vol. 2, pp. 978– 982.
[19]
S. Goel and R. Negi, “ Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2180– 2189, Jun. 2008.
[20]
A. Mukherjee and A. L. Swindlehurst, “ Robust beamforming for secrecy in MIMO wiretap channels with imperfect CSI,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351– 361, Jan. 2011.
[21]
R. Zhang, L. Song, Z. Han, and B. Jiao, “ Physical layer security for two-way untrusted relaying with friendly jammers,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3693– 3704, Oct. 2012.
[22]
I. Stanojev and A. Yener “ Improving secrecy rate via spectrum leasing for friendly jamming,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 134– 145, Jan. 2013.
[23]
G. Zheng, L.-C. Choo, and K.-K. Wong, “ Optimal cooperative jamming to enhance physical layer security using relays,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1317– 1322, Mar. 2011.
[24]
H.-M. Wang, Q. Yin, and X.-G. Xia, “ Distributed beamforming for physical-layer security of two-way relay networks,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 3532– 3545, Jul. 2012.
[25]
H.-M. Wang, M. Luo, Q. Yin, and X.-G. Xia, “ Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 12, pp. 2007– 2020, Dec. 2013.
[26]
H.-M. Wang, M. Luo, X.-G. Xia, and Q. Yin, “ Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper's CSI,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 39– 42, Jan. 2013.
[27]
J. Zhu, R. Schober, and V. K. Bhargava, “ Secure transmission in multicell massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp. 4766– 4781, Sep. 2014.
[28]
J. Zhu, R. Schober, and V. K. Bhargava, “ Linear precoding of data and artificial noise in secure massive MIMO systems,” IEEE Trans. Wireless Commun.. [Online]. Available: http://arxiv.org/abs/1505.00330
[29]
F. Zhu, F. Gao, M. Yao, and H. Zou, “ Joint information-and jamming-beamforming for physical layer security with full duplex base station,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6391– 6401, Dec. 2014.
[30]
M. Li, S. Kundu, D. A. Pados, and S. N. Batalama, “ Secure waveforms for SISO channels,” in Proc. IEEE ICASSP, Vancouver, BC, Canada, May 2013, pp. 4713– 4717.
[31]
M. Li, S. Kundu, D. A. Pados, and S. N. Batalama, “ Waveform design for secure SISO transmissions and multicasting,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 1864– 1874, Sep. 2013.
[32]
A. M. Tulino and S. Verdu, “ Random matrix theory and wireless communications,” J. Commun. Inf. Theory, vol. 1, no. 1, pp. 1– 182, Jun. 2004.
[33]
A. Edelman, “ Eigenvalues and condition numbers of random matrices,” SIAM. J. Matrix Anal. Appl., vol. 9, no. 4, pp. 543– 560, Oct. 1988.
[34]
D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing. Boston, MA, USA: McGraw-Hill, 2000.
[35]
R. A. Horn and C. R. Johnson. Matrix Analysis. New York, NY, USA: Cambridge Univ. Press, 1985.
[36]
T. M. Cover and J. A. Thomas. Elements of Information Theory, 2nd ed. Hoboken, NJ, USA: Wiley, 2006.
[37]
S. Shamai and S. Verdü, “ Worst-case power-constrained noise for binary input channels,” IEEE Trans. Inf. Theory, vol. 38, no. 5, pp. 1494– 1511, Sep. 1992.

Cited By

View all
  • (2024)Smart Jamming Using Reconfigurable Intelligent Surface: Asymptotic Analysis and OptimizationIEEE Transactions on Wireless Communications10.1109/TWC.2023.328097523:1(637-651)Online publication date: 1-Jan-2024
  • (2023)Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things ApplicationsIEEE Transactions on Wireless Communications10.1109/TWC.2022.322273522:6(3955-3967)Online publication date: 1-Jun-2023
  • (2023)Jamming the Relay-Assisted Multi-User Wireless Communication System: A Zero-Sum Game ApproachIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.327722218(3198-3211)Online publication date: 17-May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Wireless Communications
IEEE Transactions on Wireless Communications  Volume 14, Issue 10
Oct. 2015
625 pages

Publisher

IEEE Press

Publication History

Published: 01 October 2015

Author Tags

  1. signal-to-jamming-plus-noise ratio (SJNR)
  2. Artificial interference
  3. beamforming
  4. jamming
  5. multiple-input multiple-output (MIMO)
  6. power allocation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Smart Jamming Using Reconfigurable Intelligent Surface: Asymptotic Analysis and OptimizationIEEE Transactions on Wireless Communications10.1109/TWC.2023.328097523:1(637-651)Online publication date: 1-Jan-2024
  • (2023)Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things ApplicationsIEEE Transactions on Wireless Communications10.1109/TWC.2022.322273522:6(3955-3967)Online publication date: 1-Jun-2023
  • (2023)Jamming the Relay-Assisted Multi-User Wireless Communication System: A Zero-Sum Game ApproachIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.327722218(3198-3211)Online publication date: 17-May-2023
  • (2022)The impact of intentional interference on the performances of ML detector in MIMO systemsPhysical Communication10.1016/j.phycom.2022.10166352:COnline publication date: 1-Jun-2022
  • (2022)GPDSExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.118394210:COnline publication date: 30-Dec-2022
  • (2022)Efficient jamming attack against MIMO transceiverDigital Signal Processing10.1016/j.dsp.2022.103593127:COnline publication date: 1-Jul-2022
  • (2021)Joint relay and channel selection in relay‐aided anti‐jamming systemTransactions on Emerging Telecommunications Technologies10.1002/ett.424332:9Online publication date: 8-Sep-2021
  • (2019)Angle-domain secure transmission in air–terrestrial mMIMO system with single antenna ground eavesdropperPhysical Communication10.1016/j.phycom.2019.10082836:COnline publication date: 1-Oct-2019
  • (2018)Pilot Spoofing Attack by Multiple EavesdroppersIEEE Transactions on Wireless Communications10.1109/TWC.2018.285994917:10(6433-6447)Online publication date: 1-Oct-2018
  • (2017)Jamming a TDD Point-to-Point Link Using Reciprocity-Based MIMOIEEE Transactions on Information Forensics and Security10.1109/TIFS.2017.272582312:12(2957-2970)Online publication date: 1-Dec-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media