Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Incentive Mechanisms for Discretized Mobile Crowdsensings

Published: 01 January 2016 Publication History

Abstract

In crowdsensing to mobile phones, each user needs incentives to participate. Mobile devices with sensing capabilities have enabled a new paradigm of mobile crowdsensing with a broad range of applications. A major challenge in achieving stable crowdsensing on a large scale is the incentive issue. Proper incentive mechanisms are necessary to keep the crowdsensing working. However, most existing incentive mechanisms for crowdsensing assume the system admit continuous strategies like sensing time in opposite of the fact that many digital devices and crowdsensing models only admit discretized strategies. In this paper, we show that discretization, like rounding method, can make the existing crowdsensing incentive mechanisms invalid. To address this problem, we design the incentive mechanism for discrete crowdsensing in which each user has a uniform sensing subtask length. We rigorously show that our mechanism can achieve perfect Bayesian equilibrium (PBE) and maximize the platform utility. Our algorithm is efficient since its complexity is linear to the number of users. We also consider the cases in which the users have diverse subtask lengths, and propose another two incentive mechanisms to achieve PBEs and maximize platform utility. Extensive simulations verify our mechanisms are efficient, individual-rational, and system-optimal.

References

[1]
N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–150, Sep. 2010.
[2]
R. K. Ganti, K. Raghu, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39, Nov. 2011.
[3]
N. Eagle, “Txteagle: Mobile crowdsourcing,” in Internationalization, Design and Global Development. New York, NY, USA: Springer, 2009, pp. 447–456.
[4]
R. Kazman and H.-M. Chen, “The metropolis model a new logic for development of crowdsourced systems,” Commun. ACM, vol. 52, no. 7, pp. 76–84, 2009.
[5]
M. Vukovic, “Crowdsourcing for enterprises,” in Proc. IEEE World Conf. Serv. I, 2009, pp. 686–692.
[6]
S. Chun and F. Artigas, “Sensors and crowdsourcing for environmental awareness and emergency planning,” Int. J. E-Planning Res., vol. 1, no. 1, pp. 56–74, 2012.
[7]
A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems on the world-wide web,” Commun. ACM, vol. 54, no. 4, pp. 86–96, 2011.
[8]
D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing,” in Proc. 18th Annu. Int. Conf. Mobile Comput. Netw., Aug. 2012, pp. 173–184.
[9]
Y. Zhang and M. van der Schaar, “Reputation-based incentive protocols in crowdsourcing applications,” in Proc. IEEE INFOCOM, 2012, pp. 2140–2148.
[10]
Z. Feng, Y. Zhu, and L. M. Ni, “imac: Strategy-proof incentive mechanism for mobile crowdsourcing,” in Proc. Wireless Algorithms Syst. Appl., 2013, vol. 7992, pp. 337–350.
[11]
B. Hoh, T. Yan, D. Ganesan, K. Tracton, T. Iwuchukwu, and J.-S. Lee, “Trucentive: A game-theoretic incentive platform for trustworthy mobile crowdsourcing parking services,” in Proc. 15th Int. IEEE Conf. Intell. Transp. Syst., 2012, pp. 160–166.
[12]
D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@ home: An experiment in public-resource computing,” Commun. ACM, vol. 45, no. 11, pp. 56–61, 2002.
[13]
E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky, “Seti@ home—Massively distributed computing for seti,” Comput. Sci. Eng., vol. 3, no. 1, pp. 78–83, 2001.
[14]
M. Van Steen, “Distributed systems principles and paradigms,” Network, vol. 2, p. 28, 2002.
[15]
N. A. Lynch, M. Merritt, and R. R. Yager, Atomic Transactions: In Concurrent and Distributed Systems. San Mateo, CA, USA: Morgan Kaufmann, 1993.
[16]
R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.
[17]
D. E. Bell and L. J. La Padula, “Secure computer system: Unified exposition and multics interpretation,” DTIC Document, Defense Technical Information Center, Fort Belvoir, VA, Tech. Rep. , 1976.
[18]
D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in Proc. 5th IEEE/ACM Int. Workshop Grid Comput., 2004, pp. 4–10.
[19]
Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao, “Automatically characterizing places with opportunistic crowdsensing using smartphones,” in Proc. ACM Conf. Ubiq. Comput., 2012, pp. 481–490.
[20]
J. Postel, “Transmission control protocol,” RFC 793, 1981.
[21]
P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proc. ACM SIGGRAPH Classes, 2008, p. 31.
[22]
I. Koutsopoulos, “Optimal incentive-driven design of participatory sensing systems,” in Proc. IEEE INFOCOM, 2013, pp. 1402–1410.
[23]
D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay auctions,” in Proc. 10th ACM Conf. Electron. Commerce, 2009, pp. 119–128.
[24]
S. Chawla, J. D. Hartline, and B. Sivan, “Optimal crowdsourcing contests,” in Proc. 23rd Annu. ACM-SIAM Symp. Discr. Algorithms, 2012, pp. 856–868.
[25]
S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: A smartphone based sensing system for on-street parking,” in Proc. 19th Annu. Int. Conf. Mobile Comput. Netw., 2013, pp. 75–86.
[26]
D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully without sacrificing utility: Online incentive mechanisms with budget constraint,” in Proc. IEEE INFOCOM, 2014, pp. 1213–1221.
[27]
Y. Singer, “Budget feasible mechanisms,” in Proc. 51st Annu. IEEE Symp. Found. Comput. Sci., 2010, pp. 765–774.
[28]
A. Singla and A. Krause, “Truthful incentives in crowdsourcing tasks using regret minimization mechanisms,” in Proc. 22nd Int. Conf. World Wide Web, 2013, pp. 1167–1178.
[29]
J. C. Harsanyi, “Games with incomplete information played by Bayesian players, I–III,” Manage. Sci., vol. 50, no. 2, pp. 1804–1817, 2004.
[30]
S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A simple, cheat-proof, credit-based system for mobile ad-hoc networks,” in Proc. 22nd Annu. Joint Conf. IEEE Comput. Commun. INFOCOM, 2003, vol. 3, pp. 1987–1997.
[31]
S. Zhong and F. Wu, “On designing collusion-resistant routing schemes for non-cooperative wireless ad hoc networks,” in Proc. 13th Annu. ACM Int. Conf. Mobile Comput. Netw., 2007, pp. 278–289.
[32]
F. Wu, T. Chen, S. Zhong, L. E. Li, and Y. R. Yang, “Incentive-compatible opportunistic routing for wireless networks,” in Proc. 14th ACM Int. Conf. Mobile Comput. Netw., 2008, pp. 303–314.
[33]
T. Chen and S. Zhong, “Inpac: An enforceable incentive scheme for wireless networks using network coding,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.
[34]
D. Yang, X. Fang, and G. Xue, “Truthful incentive mechanisms for k-anonymity location privacy,” in Proc. IEEE INFOCOM, 2013, pp. 2994–3002.
[35]
J. F. Nash et al., “Equilibrium points in n-person games,” Proc. Nat. Acad. Sci., vol. 36, no. 1, pp. 48–49, 1950.
[36]
J. Nash, “Non-cooperative games,” Ann. Math., vol. 54, no. 2, pp. 286–295, 1951.
[37]
C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of computing a nash equilibrium,” SIAM J. Comput., vol. 39, no. 1, pp. 195–259, 2009.
[38]
A. Mas-Collel, M. D. Whinston, and J. Green, Group Strategyproofness and No Subsidy Via LP-Duality. London, U.K.: Oxford Univ. Press, 1995.
[39]
K. Jain and V. V. Vijay, “Group strategyproofness and no subsidy via LP-duality,” in Proc. ASPLOS, 1999, pp. 190–201.
[40]
H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs: Budget balance versus efficiency,” Econ. Theory, vol. 18, no. 3, pp. 511–533, 2001.
[41]
R. Selten, “A reexamination of the perfectness concept for equilibrium points in extensive games,” Int. J. Game Theory, vol. 4, no. 1, pp. 25–55, 1975.
[42]
T. X. Liu, J. Yang, L. A. Adamic, and Y. Chen, “Crowdsourcing with all-pay auctions: A field experiment on Taskcn,” Proc. Amer. Soc. Inf. Sci. Technol., vol. 48, no. 1, pp. 1–4, 2011.
[43]
L. G. Jaimes, I. Vergara-Laurens, and M. A. Labrador, “A location-based incentive mechanism for participatory sensing systems with budget constraints,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2012, pp. 103–108.

Cited By

View all
  • (2022)A Survey of Application and Key Techniques for Mobile CrowdsensingWireless Communications & Mobile Computing10.1155/2022/36935372022Online publication date: 1-Jan-2022
  • (2017)Quality of Sensing Aware Budget Feasible Mechanism for Mobile CrowdsensingIEEE Transactions on Wireless Communications10.1109/TWC.2017.268608516:6(3619-3631)Online publication date: 8-Jun-2017

Index Terms

  1. Incentive Mechanisms for Discretized Mobile Crowdsensings
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Wireless Communications
    IEEE Transactions on Wireless Communications  Volume 15, Issue 1
    Jan. 2016
    804 pages

    Publisher

    IEEE Press

    Publication History

    Published: 01 January 2016

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)A Survey of Application and Key Techniques for Mobile CrowdsensingWireless Communications & Mobile Computing10.1155/2022/36935372022Online publication date: 1-Jan-2022
    • (2017)Quality of Sensing Aware Budget Feasible Mechanism for Mobile CrowdsensingIEEE Transactions on Wireless Communications10.1109/TWC.2017.268608516:6(3619-3631)Online publication date: 8-Jun-2017

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media