Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach

Published: 07 March 2024 Publication History

Abstract

Channel estimation in reconfigurable intelligent surfaces (RIS)-aided systems is crucial for optimal configuration of the RIS and various downstream tasks such as user localization. In RIS-aided systems, channel estimation involves estimating two channels for the user-RIS (UE-RIS) and RIS-base station (RIS-BS) links. In the literature, two approaches are proposed: (i) cascaded channel estimation where the two channels are collapsed into a single one and estimated using training signals at the BS, and (ii) separate channel estimation that estimates each channel separately either in a passive or semi-passive RIS setting. In this work, we study the separate channel estimation problem in a fully passive RIS-aided millimeter-wave (mmWave) single-user single-input multiple-output (SIMO) communication system. First, we adopt a variational-inference (VI) approach to jointly estimate the UE-RIS and RIS-BS instantaneous channel state information (I-CSI). In particular, auxiliary posterior distributions of the I-CSI are learned through the maximization of the evidence lower bound. However, estimating the I-CSI for both links in every coherence block results in a high signaling overhead to control the RIS in scenarios with highly mobile users. Thus, we extend our first approach to estimate the slow-varying statistical CSI of the UE-RIS link overcoming the highly variant I-CSI. Precisely, our second method estimates the I-CSI of RIS-BS channel and the UE-RIS channel covariance matrix (CCM) directly from the uplink training signals in a fully passive RIS-aided system. The simulation results demonstrate that using maximum a posteriori channel estimation using the auxiliary posteriors can provide a capacity that approaches the capacity with perfect CSI. Leveraging the UE-RIS CCM enhances spectral efficiency by minimizing the training overhead required to control the RIS, and exploiting its low-rank structure reduces training overhead compared to the maximum likelihood estimator.

References

[1]
F. Fredj, A. Feriani, A. Mezghani, and E. Hossain, “Variational inference-based channel estimation for reconfigurable intelligent surface-aided wireless systems,” in Proc. IEEE Int. Conf. Commun., May 2023, pp. 3456–3461.
[2]
W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, Jun. 2019.
[3]
B. Zheng, C. You, W. Mei, and R. Zhang, “A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1035–1071, 2nd Quart., 2022.
[4]
S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nature Electron., vol. 3, no. 1, pp. 20–29, Jan. 2020.
[5]
Q.-U.-U. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation,” 2019, arXiv:1906.02360.
[6]
X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2070–2084, Jul. 2022.
[7]
X. Peiet al., “RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, Dec. 2021.
[8]
Y. Liuet al., “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546–1577, 3rd Quart., 2021.
[9]
L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and X. Gao, “Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission,” IEEE Trans. Signal Process., vol. 69, pp. 1407–1421, 2020.
[10]
P. Staat, H. Elders-Boll, M. Heinrichs, R. Kronberger, C. Zenger, and C. Paar, “Intelligent reflecting surface-assisted wireless key generation for low-entropy environments,” in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2021, pp. 745–751.
[11]
M. Di Renzoet al., “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open J. Commun. Soc., vol. 1, pp. 798–807, 2020.
[12]
M. A. Rahiman, “Intelligent reflecting surface (IRS) assisted mmWave wireless communication systems: A survey,” J. Commun., vol. 17, no. 9, pp. 745–760, 2022.
[13]
H. Guoet al., “A comparison between network-controlled repeaters and reconfigurable intelligent surfaces,” 2022, arXiv:2211.06974.
[14]
Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
[15]
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
[16]
P. Wang, J. Fang, H. Duan, and H. Li, “Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems,” IEEE Signal Process. Lett., vol. 27, pp. 905–909, 2020.
[17]
B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface assisted multi-user OFDMA: Channel estimation and training design,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8315–8329, Dec. 2020.
[18]
K. Ardah, S. Gherekhloo, A. L. F. de Almeida, and M. Haardt, “TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems,” IEEE Signal Process. Lett., vol. 28, pp. 513–517, 2021.
[19]
C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 898–912, Feb. 2022.
[20]
W. Shen, Z. Qin, and A. Nallanathan, “Deep learning for super-resolution channel estimation in reconfigurable intelligent surface aided systems,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1491–1503, Mar. 2023.
[21]
S. Liu, Z. Gao, J. Zhang, M. D. Renzo, and M. Alouini, “Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9223–9228, Aug. 2020.
[22]
S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, “Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6691–6705, Oct. 2021.
[23]
S. E. Zegrar, L. Afeef, and H. Arslan, “A general framework for RIS-aided mmWave communication networks: Channel estimation and mobile user tracking,” 2020, arXiv:2009.01180.
[24]
S. Palmucci, A. Guerra, A. Abrardo, and D. Dardari, “Two-timescale joint precoding design and RIS optimization for user tracking in near-field MIMO systems,” IEEE Trans. Signal Process., vol. 71, pp. 3067–3082, 2023.
[25]
G. T. de Araújo, A. L. F. de Almeida, and R. Boyer, “Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3, pp. 789–802, Apr. 2021.
[26]
X. Hu, R. Zhang, and C. Zhong, “Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1132–1142, Feb. 2022.
[27]
I.-S. Kim, M. Bennis, J. Oh, J. Chung, and J. Choi, “Bayesian channel estimation for intelligent reflecting surface-aided mmWave massive MIMO systems with semi-passive elements,” 2022, arXiv:2206.06605.
[28]
M. R. Akdenizet al., “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
[29]
M. He, J. Xu, W. Xu, H. Shen, N. Wang, and C. Zhao, “RIS-assisted quasi-static broad coverage for wideband mmWave massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2551–2565, Apr. 2023.
[30]
J. Xuet al., “Reconfiguring wireless environments via intelligent surfaces for 6G: Reflection, modulation, and security,” Sci. China Inf. Sci., vol. 66, no. 3, Mar. 2023, Art. no.
[31]
Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intelligent surface-assisted wireless communication exploiting statistical CSI,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8238–8242, Aug. 2019.
[32]
M.-M. Zhao, Q. Wu, M.-J. Zhao, and R. Zhang, “Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 2–17, Jan. 2021.
[33]
F. Yang, J.-B. Wang, H. Zhang, C. Chang, and J. Cheng, “Intelligent reflecting surface-assisted mmWave communication exploiting statistical CSI,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.
[34]
S. Park and R. W. Heath Jr., “Spatial channel covariance estimation for mmWave hybrid MIMO architecture,” in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1424–1428.
[35]
H. Wang, J. Fang, H. Duan, and H. Li, “Spatial channel covariance estimation and two-timescale beamforming for IRS-assisted millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 22, no. 9, pp. 6048–6060, Sep. 2023.
[36]
D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation for Bayesian inference,” IEEE Signal Process. Mag., vol. 25, no. 6, pp. 131–146, Nov. 2008.
[37]
D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518, pp. 859–877, 2017.
[38]
C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational inference,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8, pp. 2008–2026, Aug. 2019.
[39]
Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text processing,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1727–1736.
[40]
V. D. Pegorara Souto, R. D. Souza, B. F. Uchôa-Filho, A. Li, and Y. Li, “Beamforming optimization for intelligent reflecting surfaces without CSI,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1476–1480, Sep. 2020.
[41]
S. Haghighatshoar and G. Caire, “Massive MIMO channel subspace estimation from low-dimensional projections,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 303–318, Jan. 2017.
[42]
M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization gradients,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 441–452.
[43]
T. Lin, X. Yu, Y. Zhu, and R. Schober, “Channel estimation for IRS-assisted millimeter-wave MIMO systems: Sparsity-inspired approaches,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4078–4092, Jun. 2022.
[44]
J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” J. Electron. Sci. Technol., vol. 17, pp. 26–40, Mar. 2019.
[45]
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, arXiv:1412.6980.
[46]
J. Xu, W. Xu, D. W. K. Ng, and A. L. Swindlehurst, “Secure communication for spatially sparse millimeter-wave massive MIMO channels via hybrid precoding,” IEEE Trans. Commun., vol. 68, no. 2, pp. 887–901, Feb. 2020.
[47]
F. Fredj, Y. Al-Eryani, S. Maghsudi, M. Akrout, and E. Hossain, “Distributed beamforming techniques for cell-free wireless networks using deep reinforcement learning,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 1186–1201, Jun. 2022.

Index Terms

  1. Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Wireless Communications
    IEEE Transactions on Wireless Communications  Volume 23, Issue 8_Part_2
    Aug. 2024
    1198 pages

    Publisher

    IEEE Press

    Publication History

    Published: 07 March 2024

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media