Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Output-Sensitive Filtering of Streaming Volume Data

Published: 01 January 2017 Publication History

Abstract

Real-time volume data acquisition poses substantial challenges for the traditional visualization pipeline where data enhancement is typically seen as a pre-processing step. In the case of 4D ultrasound data, for instance, costly processing operations to reduce noise and to remove artefacts need to be executed for every frame. To enable the use of high-quality filtering operations in such scenarios, we propose an output-sensitive approach to the visualization of streaming volume data. Our method evaluates the potential contribution of all voxels to the final image, allowing us to skip expensive processing operations that have little or no effect on the visualization. As filtering operations modify the data values which may affect the visibility, our main contribution is a fast scheme to predict their maximum effect on the final image. Our approach prioritizes filtering of voxels with high contribution to the final visualization based on a maximal permissible error per pixel. With zero permissible error, the optimized filtering will yield a result that is identical to filtering of the entire volume. We provide a thorough technical evaluation of the approach and demonstrate it on several typical scenarios that require on-the-fly processing.

References

[1]
{BATK12}¿ Bronstad E., Asen J., Torp H., Kiss G.: Visibility driven visualization of 3D cardiac ultrasound data on the GPU. In IEEE International Ultrasonics Symposium IUS2012, pp. pp.2651-2654.
[2]
{BBBV12}¿ Birkeland Å., Bruckner S., Brambilla A., Viola I.: Illustrative membrane clipping. Computer Graphics Forum Volume 31, Issue 3 2012, pp.905-914.
[3]
{BH15}¿ Brewer C. A., Harrower M.: Colorbrewer - a web tool for selecting colors for maps. "http://colorbrewer2.org/", October 2015.
[4]
{BHMF08}¿ Beyer J., Hadwiger M., Möller T., Fritz L.: Smooth mixed-resolution GPU volume rendering. In Proceedings of Point-Based Graphics 20082008, pp. pp.163-170.
[5]
{BHP14}¿ Beyer J., Hadwiger M., Pfister H.: A Survey of GPU-Based Large-Scale Volume Visualization. In EuroVis - STARs2014, pp. pp.105-123.
[6]
{BJE*11}¿ Bruder R., Jauer P., Ernst F., Richter L., Schweikard A.: Real-time 4D ultrasound visualization with the voreen framework. In Proceedings of ACM SIGGRAPH 2011 Posters2011, pp. pp.74:1-74:1.
[7]
{BNS01}¿ Boada I., Navazo I., Scopigno R.: Multiresolution volume visualization with a texture-based octree. The Visual Computer Volume 17, Issue 3 2001, pp.185-197.
[8]
{BW03}¿ Bittner J., Wonka P.: Visibility in computer graphics. Journal of Environment and Planning B: Planning and Design Volume 5, Issue 30 2003, pp.729-756.
[9]
{CNLE09}¿ Crassin C., Neyret F., Lefebvre S., Eisemann E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In Proceedings of Symposium on Interactive 3D Graphics and Games2009, ACM, pp. pp.15-22.
[10]
{COCSD03}¿ Cohen-Or D., Chrysanthou Y. L., Silva C. T., Durand F.: A survey of visibility for walkthrough applications. IEEE Transactions on Visualization and Computer Graphics Volume 9, Issue 3 2003, pp.412-431.
[11]
{DWS*88}¿ Deering M., Winner S., Schediwy B., Duffy C., Hunt N.: The triangle processor and normal vector shader: A vlsi system for high performance graphics. ACM SIGGRAPH Computer Graphics Volume 22, Issue 4 1988, pp.21-30.
[12]
{EEH*09}¿ Elnokrashy A., Elmalky A., Hosny T., Ellah M., Megawer A., Elsebai A., Youssef A.-B., Kadah Y.: GPU-based reconstruction and display for 4D ultrasound data. In Proceedings of the IEEE International Ultrasonics Symposium 20092009, pp. pp.189-192.
[13]
{EHH*12}¿ Elnokrashy A., Hassan M., Hosny T., Ali A., Megawer A., Kadah Y.: Multipass GPU surface rendering in 4D ultrasound. In Proceedings of the Cairo International Biomedical Engineering Conference 20122012, pp. pp.39-43.
[14]
{EHK*06}¿ Engel K., Hadwiger M., Kniss J., Rezk-Salama C., Weiskopf D.: Real-Time Volume Graphics. AK Peters, 2006.
[15]
{EKE01}¿ Engel K., Kraus M., Ertl T.: High-quality pre-integrated volume rendering using hardware accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/EG Workshop on Graphics Hardware 20012001, pp. pp.9-16.
[16]
{FNVV98}¿ Frangi A. F., Niessen W. J., Vincken K. L., Viergever M. A.: Multiscale vessel enhancement filtering. In Proceedings of Medical Image Computing and Computer-Assisted Intervention1998, pp. pp.130-137.
[17]
{FSK13}¿ Fogal T., Schiewe A., Krüger J.: An analysis of scalable GPU-based ray-guided volume rendering. In IEEE Symposium on Large Data Analysis and Visualization2013, pp. pp.43-51.
[18]
{FSME14}¿ Frey S., Sadlo F., Ma K.-L., Ertl T.: Interactive progressive visualization with space-time error control. IEEE Transactions on Visualization and Computer Graphics Volume 20, Issue 12 2014, pp.2397-2406.
[19]
{FW08}¿ Falk M., Weiskopf D.: Output-sensitive 3d line integral convolution. IEEE Transactions of Visualization and Computer Graphics Volume 14, Issue 4 2008, pp.820-834.
[20]
{GM05}¿ Gobbetti E., Marton F.: Far Voxels - a multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms. ACM Transactions on Graphics Volume 24, Issue 3 2005, pp.878-885.
[21]
{GMG08}¿ Gobbetti E., Marton F., Guitián J. A. I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer Volume 24, Issue 7-9 2008, pp.797-806.
[22]
{HBJP12}¿ Hadwiger M., Beyer J., Jeong W.-K., Pfister H.: Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Transactions of Visualization and Computer Graphics Volume 18, Issue 2 2012, pp.2285-2294.
[23]
{HSBG05}¿ Hadwiger M., Scharsach H., Bühler K., Gross M.: Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum Volume 24, Issue 3 2005, pp.303-312.
[24]
{Ion10}¿ Ionescu C.: The benefits of 3D-4D fetal echocardiography. Maedica Buchar Volume 5, Issue 1 2010, pp.45-50.
[25]
{JBH*09}¿ Jeong W.-K., Beyer J., Hadwiger M., Vazquez A., Pfister H., Whitaker R. T.: Scalable and interactive segmentation and visualization of neural processes in EM datasets. IEEE Transactions on Visualization and Computer Graphics Volume 15, Issue 6 2009, pp.1505-1514.
[26]
{KE02}¿ Kraus M., Ertl T.: Adaptive texture maps. In Proceedings of ACM SIGGRAPH/EG Conference on Graphics Hardware2002, pp. pp.7-15.
[27]
{KLF05}¿ Kniss J., Lefohn A., Fout N.: Deferred Filtering: Rendering from Difficult Data Formats. Addison Wesley, 2005, ch. 41, pp. pp.669-677.
[28]
{Lev90}¿ Levoy M.: Efficient ray tracing of volume data. ACM Transactions on Graphics Volume 9, Issue 3 1990, pp.245-261.
[29]
{LL94}¿ Lacroute P., Levoy M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. In Proceedings of ACM SIGGRAPH1994, pp. pp.451-458.
[30]
{LLY06}¿ Ljung P., Lundström C., Ynnerman A.: Multiresolution interblock interpolation in direct volume rendering. In Proceedings of EuroVis 20062006, pp. pp.259-266.
[31]
{LV11}¿ Lebit F.-D., Vladareanu R.: The role of 4D ultrasound in the assessment of fetal behaviour. Maedica Buchar Volume 6, Issue 2 2011, pp.120-127.
[32]
{MGDG14}¿ Marton F., Guitián J. A. I., Díaz J., Gobbetti E.: Real-time deblocked GPU rendering of compressed volumes. In Proceedings of Vision, Modeling and Visualization2014, pp. pp.167-174.
[33]
{MJC02}¿ Mora B., Jessel J.-P., Caubet R.: A new object-order ray-casting algorithm. In Proceedings of IEEE Visualization 20022002, pp. pp.203-210.
[34]
{NPH*00}¿ Nelson T., Pretorius D., Hull A., Riccabona M., Sklansky M., James G.: Sources and impact of artifacts on clinical three-dimensional ultrasound imaging. Ultrasound in Obstetrics & Gynecology Volume 16, Issue 4 2000, pp.374-383.
[35]
{PM87}¿ Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. In Proceedings of IEEE Computer Society Workshop on Computer Vision1987, pp. pp.16-22.
[36]
{PVMd12}¿ Perrin D.P., Vasilyev N.V., Marx G.R., <familyNamePrefix>del</familyNamePrefix>Nido P.J.: Temporal enhancement of 3D echocardiography by frame reordering. JACC Cardiovascular Imaging Volume 5, Issue 3 2012, pp.300-304.
[37]
{RDR10}¿ Ropinski T., Döring C., Rezk-Salama C.: Interactive volumetric lighting simulating scattering and shadowing. In Proceedings of IEEE Pacific Visualization2010, pp. pp.169-176.
[38]
{SBVB14}¿ Soltészová V., Birkeland A., Viola I., Bruckner S.: Visibility-driven processing of streaming volume data. In Proceedings of EG Workshop on Visual Computing for Biomedicine2014, pp. pp.127-136.
[39]
{SPBV10}¿ Soltészová V., Patel D., Bruckner S., Viola I.: A multidirectional occlusion shading model for direct volume rendering. Computer Graphics Forum Volume 29, Issue 3 2010, pp.883-891.
[40]
{SSHW*12}¿ Soltészová V., Sævil-Helljesen L. E., Wein W., Gilja O. H., Viola I.: Lowest-variance streamlines for filtering of 3D ultrasound. In Proceedings of EG Workshop on Visual Computing for Biomedicine2012, pp. pp.41-48.
[41]
{TM99}¿ Tomasi C., Manduchi R.: Bilateral filtering for gray and color images. In Proceedings of International Conference on Computer Vision1999, pp. pp.839-846.
[42]
{WRW07}¿ Westenberg M., Roerdink J., Wilkinson M.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Transactions of Visualization and Computer Graphics 2007, pp.2943-2952.

Cited By

View all
  • (2018)Multiresolution Volume Filtering in the Tensor Compressed DomainIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2017.277128224:10(2714-2727)Online publication date: 1-Oct-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Graphics Forum
Computer Graphics Forum  Volume 36, Issue 1
January 2017
346 pages
ISSN:0167-7055
EISSN:1467-8659
Issue’s Table of Contents

Publisher

The Eurographs Association & John Wiley & Sons, Ltd.

Chichester, United Kingdom

Publication History

Published: 01 January 2017

Author Tags

  1. Categories and Subject Descriptors according to ACM CCS: I.3.7 [Computer Graphics] Three-Dimensional Graphics and Realism - Visible line/surface algorithms. I.4.3 [Image Processing and Computer Vision] Enhancement - Filtering
  2. object-order imaging
  3. visibility
  4. volume data processing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Multiresolution Volume Filtering in the Tensor Compressed DomainIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2017.277128224:10(2714-2727)Online publication date: 1-Oct-2018

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media