Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

New Fast Algorithms for Matrix Operations

Published: 01 May 1980 Publication History

Abstract

A new technique of trilinear operations of aggregating, uniting and canceling is introduced and applied to constructing fast linear noncommutative algorithms for matrix multiplication. The result is an asymptotic improvement of Strassen’s famous algorithms for matrix operations.

References

[1]
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975x+470
[2]
Allan Borodin, Ian Munro, The computational complexity of algebraic and numeric problems, American Elsevier Publishing Co., Inc., New York-London-Amsterdam, 1975x+174
[3]
Roger W. Brockett, David Dobkin, On the optimal evaluation of a set of bilinear forms, Fifth Annual ACM Symposium on Theory of Computing (Austin, Tex., 1973), Assoc. Comput. Mach., New York, 1973, 88–95
[4]
R. W. Brockett, D. Dobkin, On the number of multiplications required for matrix multiplication, SIAM J. Comput., 5 (1976), 624–628
[5]
Roger W. Brockett, David Dobkin, On the optimal evaluation of a set of bilinear forms, Linear Algebra and Appl., 19 (1978), 207–235
[6]
C. M. Fiduccia, Fast matrix multiplication, Proc. Third Ann. ACM Symp. on Theory of Computing, 1971, 45–49
[7]
Charles M. Fiduccia, R. E. Miller, J. W. Thatcher, On obtaining upper bounds on the complexity of matrix multiplicationComplexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, 31–40, 187–212
[8]
C. M. Fiduccia, Ph.D. Thesis, On algebraic complexity of matrix multiplication, Brown University, Providence, RI, 1973
[9]
N. Gastinel, Sur le calcul des produits de matrices, Numer. Math., 17 (1971), 222–229
[10]
H. F. deGroote, On varieties of optimal algorithms for the computation of bilinear mappings II. Optimal algorithms for 2×2 matrix multiplication, Tech. Rep., Mathematisches Institute, Universität Tübingen, 1978
[11]
J. E. Hopcroft, L. R. Kerr, Some techniques for proving certain simple programs optimal, Proc. of the 1969 Tenth Ann. Symp. on Switching and Automata Theory, 1969, 36–45
[12]
J. E. Hopcroft, L. R. Kerr, On minimizing the number of multiplications necessary for matrix multiplication, SIAM J. Appl. Math., 20 (1971), 30–36
[13]
J. E. Hopcroft, J. Musinski, Duality applied to the complexity of matrix multiplication and other bilinear forms, SIAM J. Comput., 2 (1973), 159–173
[14]
Z. M. Kedem, D. G. Kirkpatrick, Addition requirements for rational functions, SIAM J. Comput., 6 (1977), 188–199
[15]
D. G. Kirkpatrick, On the additions necessary to compute certain functions, Proc. 4th Ann. ACM Symp. on Theory of Computing, 1972, 94–101
[16]
Julian D. Laderman, A noncommutative algorithm for multiplying $3\times 3$ matrices using $23$ muliplications, Bull. Amer. Math. Soc., 82 (1976), 126–128
[17]
V. Ya Pan, On some methods of computing polynomial values, Problemy Kibernet., (1962), 21–30, Transl.Problems of Cybernetics, edited by A. A. Lyapunov., U.S.S.R., (1962), 7, pp. 20–30, U.S. Department of Commerce
[18]
V. Ya Pan, Ph.D. Thesis, Methods for computing polynomials, Department of Mechanics and Mathematics, Moscow State University, 1964, (In Russian.)
[19]
V. Ya Pan, On schemes for the computation of products and inverses of matrices, Russian Math. Surveys, 27 (1972), 249–250
[20]
V. Ya. Pan, Strassen's algorithm is not optimal. Trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations19th Annual Symposium on Foundations of Computer Science (Ann Arbor, Mich., 1978), IEEE, Long Beach, Calif., 1978, 166–176
[21]
R. L. Probert, On the composition of matrix multiplication algorithms, Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976), Utilitas Math., Winnipeg, Man., 1977, 357–366. Congress. Numer., XVIII
[22]
G. Schachtel, A noncommutative algorithm for multiplying $5\times 5$ matrices using $103$ multiplications, Inform. Process. Lett., 7 (1978), 180–182
[23]
Volker Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), 354–356
[24]
Volker Strassen, R. E. Miller, J. W. Thatcher, Evaluation of rational functionsComplexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, 1–10, 187–212
[25]
O. Sykora, A fast non-commutative algorithm for matrix multiplicationMathematical foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977), Springer, Berlin, 1977, 504–512. Lecture Notes in Comput. Sci., Vol. 53
[26]
Volker Strassen, Vermeidung von Divisionen, J. Reine Angew. Math., 264 (1973), 184–202
[27]
S. Winograd, A new algorithm for inner product, IEEE Trans. Computers, C-17 (1968), 693–694
[28]
Shmuel Winograd, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math., 23 (1970), 165–179
[29]
S. Winograd, On multiplication of $2\times 2$ matrices, Linear Algebra and Appl., 4 (1971), 381–388
[30]
S. Winograd, to appear

Cited By

View all
  • (2023)Flip Graphs for Matrix MultiplicationProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597120(381-388)Online publication date: 24-Jul-2023
  • (2023)Towards Practical Fast Matrix Multiplication based on Trilinear AggregationProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597099(289-297)Online publication date: 24-Jul-2023
  • (2023)Multiplying 2 × 2 Sub-Blocks Using 4 MultiplicationsProceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3558481.3591083(379-390)Online publication date: 17-Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 9, Issue 2
May 1980
221 pages
ISSN:0097-5397
DOI:10.1137/smjcat.1980.9.issue-2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 May 1980

Author Tags

  1. Fast algorithms
  2. complexity of computation
  3. arithmetic complexity
  4. linear algebraic problems
  5. matrix multiplication
  6. bilinear forms
  7. trilinear form

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Flip Graphs for Matrix MultiplicationProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597120(381-388)Online publication date: 24-Jul-2023
  • (2023)Towards Practical Fast Matrix Multiplication based on Trilinear AggregationProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597099(289-297)Online publication date: 24-Jul-2023
  • (2023)Multiplying 2 × 2 Sub-Blocks Using 4 MultiplicationsProceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3558481.3591083(379-390)Online publication date: 17-Jun-2023
  • (2018)Subcubic Equivalences Between Path, Matrix, and Triangle ProblemsJournal of the ACM10.1145/318689365:5(1-38)Online publication date: 29-Aug-2018
  • (1981)Partial and Total Matrix MultiplicationSIAM Journal on Computing10.1137/021003210:3(434-455)Online publication date: 1-Aug-1981

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media