Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Structure of C1 Spline Spaces on Freudenthal Partitions

Published: 01 January 2006 Publication History

Abstract

We analyze the structure of trivariate C1 splines on uniform tetrahedral partitions $\Delta$. The Freudenthal partitions $\Delta$ are obtained from uniform cube partitions by using three planes with a common line to subdivide every cube into six tetrahedra. This is a natural three-dimensional generalization of the well-known three-directional mesh in the plane. By using Bernstein--Bézier techniques, we construct minimal determining sets for C1 spline spaces on $\Delta$ of arbitrary degree and give explicit formulae for the dimension of the spaces.

References

[1]
G. Albertelli and R. A. Crawfis, Efficient subdivision of finite‐element datasets with consistent tetrahedra, in Proceedings of IEEE Visualization, 1997, pp. 213–219.
[2]
P. Alfeld, A trivariate C1 Clough‐Tocher interpolation scheme, Comput. Aided Geom. Design, 1 (1984), pp. 169–181.
[3]
Peter Alfeld, Bruce Piper, L. Schumaker, An explicit basis for C1 quartic bivariate splines, SIAM J. Numer. Anal., 24 (1987), 891–911
[4]
Peter Alfeld, Larry Schumaker, Smooth macro‐elements based on Clough‐Tocher triangle splits, Numer. Math., 90 (2002), 597–616
[5]
Peter Alfeld, Larry Schumaker, Smooth macro‐elements based on Powell‐Sabin triangle splits, Adv. Comput. Math., 16 (2002), 29–46
[6]
Peter Alfeld, Larry Schumaker, Maritza Sirvent, On dimension and existence of local bases for multivariate spline spaces, J. Approx. Theory, 70 (1992), 243–264
[7]
Peter Alfeld, Larry Schumaker, Walter Whiteley, The generic dimension of the space of C1 splines of degree d⩾8 on tetrahedral decompositions, SIAM J. Numer. Anal., 30 (1993), 889–920
[8]
Carl de Boor, B‐form basics, SIAM, Philadelphia, PA, 1987, 131–148
[9]
C. de Boor, K. Höllig, Bivariate box splines and smooth pp functions on a three direction mesh, J. Comput. Appl. Math., 9 (1983), 13–28
[10]
C. de Boor, K. Höllig, S. Riemenschneider, Box splines, Applied Mathematical Sciences, Vol. 98, Springer‐Verlag, 1993xviii+200
[11]
H. Carr, T. Möller, and J. Snoeyink, Simplicial subdivisions and sampling artifacts, in Proceedings of IEEE Visualization, 2001, pp. 99–106.
[12]
Charles Chui, Multivariate splines, CBMS‐NSF Regional Conference Series in Applied Mathematics, Vol. 54, Society for Industrial and Applied Mathematics (SIAM), 1988vi+189, With an appendix by Harvey Diamond
[13]
Oleg Davydov, Frank Zeilfelder, Scattered data fitting by direct extension of local polynomials to bivariate splines, Adv. Comput. Math., 21 (2004), 223–271
[14]
Gerald Farin, Triangular Bernstein‐Bézier patches, Comput. Aided Geom. Design, 3 (1986), 83–127
[15]
Hans Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Ann. of Math. (2), 43 (1942), 580–582
[16]
Thomas Hangelbroek, Günther Nürnberger, Christian Rössl, Hans‐Peter Seidel, Frank Zeilfelder, Dimension of C1‐splines on type‐6 tetrahedral partitions, J. Approx. Theory, 131 (2004), 157–184
[17]
G. Hecklin, G. Nürnberger, L. L. Schumaker, and F. Zeilfelder, Efficient interpolation methods for cubic C1 splines on partially subdivided Freudenthal tetrahedral partitions, in preparation.
[18]
Ming‐Jun Lai, LeMéhauté, A new kind of trivariate C1 macro‐element, Adv. Comput. Math., 21 (2004), 273–292
[19]
Ming‐Jun Lai, Larry Schumaker, Macro‐elements and stable local bases for splines on Clough‐Tocher triangulations, Numer. Math., 88 (2001), 105–119
[20]
Ming‐Jun Lai, Larry Schumaker, Quadrilateral macroelements, SIAM J. Math. Anal., 33 (2002), 1107–1116
[21]
M.‐J. Lai and L. L. Schumaker, Splines on Triangulations, to appear.
[22]
G. Nielson and R. Franke, Computing the separating surface from segmented data, in Proceedings of IEEE Visualization, 1997, pp. 229–233.
[23]
P. Ning and J. Bloomthal, An evaluation of implicit surface tilers, IEEE Comput. Graphics and Appl., 13 (1993), pp. 33–41.
[24]
Günther Nürnberger, Approximation by spline functions, Springer‐Verlag, 1989xii+243
[25]
Günther Nürnberger, Vera Rayevskaya, Larry Schumaker, Frank Zeilfelder, Local Lagrange interpolation with bivariate splines of arbitrary smoothness, Constr. Approx., 23 (2006), 33–59
[26]
G. Nürnberger, C. Rössl, H.‐P. Seidel, F. Zeilfelder, Quasi‐interpolation by quadratic piecewise polynomials in three variables, Comput. Aided Geom. Design, 22 (2005), 221–249
[27]
Günther Nürnberger, Larry Schumaker, Frank Zeilfelder, Lagrange interpolation by C1 cubic splines on triangulated quadrangulations, Adv. Comput. Math., 21 (2004), 357–380
[28]
Günther Nürnberger, Larry Schumaker, Frank Zeilfelder, Two Lagrange interpolation methods based on C1 splines on tetrahedral partitions, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, 327–344
[29]
G. Nürnberger, F. Zeilfelder, Developments in bivariate spline interpolation, J. Comput. Appl. Math., 121 (2000), 125–152, Numerical analysis in the 20th century, Vol. I, Approximation theory
[30]
Günther Nürnberger, Frank Zeilfelder, Lagrange interpolationby bivariate C1‐splines with optimal approximation order, Adv. Comput. Math., 21 (2004), 381–419
[31]
C. Rössl, F. Zeilfelder, G. Nürnberger, and H.‐P. Seidel, Reconstruction of volume data with quadratic super splines, IEEE Trans. Visualization and Computer Graphics, 10 (2004), pp. 397–409.
[32]
C. Rössl, F. Zeilfelder, G. Nürnberger, and H.‐P. Seidel, Spline approximation of general volumetric data, in Proceedings of the ACM Symposium on Solid Modeling and Applications, 2004, pp. 1–8.
[33]
G. Schlosser, J. Hesser, F. Zeilfelder, C. Rössl, R. Männer, G. Nürnberger, and H.‐P. Seidel, Fast visualization by shear‐warp on quadratic super spline models using wavelet data decomposition, C. T. Silva, E. Gröller, and H. Rushmeyer, eds., in Proceedings of IEEE Visualization, 2005, pp. 45–55.
[34]
Larry Schumaker, Spline functions: basic theory, John Wiley & Sons Inc., 1981xiv+553, Pure and Applied Mathematics; A Wiley‐Interscience Publication
[35]
Larry Schumaker, Tatyana Sorokina, C1 quintic splines on type‐4 tetrahedral partitions, Adv. Comput. Math., 21 (2004), 421–444
[36]
L. L. Schumaker and T. Sorokina, A trivariate box macro element, Constr. Approx., to appear.
[37]
Xiquan Shi, Renhong Wang, Spline space and its B‐splines on an n+1 direction mesh in n, J. Comput. Appl. Math., 144 (2002), 241–250
[38]
T. Sorokina and A. Worsey, A Multivariate Powell‐Sabin Interpolant, University of Georgia, Athens, GA, preprint.
[39]
Tatyana Sorokina, Frank Zeilfelder, Optimal quasi‐interpolation by quadratic C1‐splines on type‐2 triangulations, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, 423–438
[40]
A. Worsey, G. Farin, An n‐dimensional Clough‐Tocher interpolant, Constr. Approx., 3 (1987), 99–110
[41]
A. Worsey, B. Piper, A trivariate Powell‐Sabin interpolant, Comput. Aided Geom. Design, 5 (1988), 177–186
[42]
Armin Iske, Ewald Quak, Michael Floater, Tutorials on multiresolution in geometric modelling, Mathematics and Visualization, Springer‐Verlag, 2002xii+421, Summer school lecture notes; Tutorial lectures from the European Summer School on Principles of Multiresolution in Geometric Modelling held at the Munich University of Technology, Munich, August 22–30, 2001
[43]
Alexander Ženíšek, Polynomial approximation on tetrahedrons in the finite element method, J. Approximation Theory, 7 (1973), 334–351

Index Terms

  1. The Structure of C1 Spline Spaces on Freudenthal Partitions
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Mathematical Analysis
    SIAM Journal on Mathematical Analysis  Volume 38, Issue 2
    2006
    310 pages
    ISSN:0036-1410
    DOI:10.1137/sjmaah.2006.38.issue-2
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2006

    Author Tags

    1. 65D07
    2. 41A63
    3. 65D17

    Author Tags

    1. trivariate splines
    2. Freudenthal partitions
    3. $C^1$ smoothness conditions
    4. minimal determining sets
    5. Bernstein--Bézier techniques
    6. dimension of spline spaces

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media