Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Coarsening Rates for a Droplet Model: : Rigorous Upper Bounds

Published: 01 January 2006 Publication History

Abstract

Certain liquids on solid substrates form a configuration of droplets connected by a precursor layer. This configuration coarsens: The average droplet size grows while the number of droplets decreases and the characteristic distance between them increases. We study this type of coarsening behavior in a model given by an evolution equation for the film height on an n-dimensional substrate. Heuristic arguments based on the asymptotic analysis of Glasner and Witelski [Phys. Rev. E, 67 (2003), p. 016302, Phys. D., 209 (2005), pp. 80-104] and numerical simulations suggest a statistically self-similar behavior characterized by a single exponent which determines the coarsening rate. In this paper, we establish rigorously an upper bound on the coarsening rate in a time-averaged sense. We use the fact that the evolution is a gradient flow, i.e., a steepest descent in an energy landscape. Coarse information on the geometry of the energy landscape serves to obtain coarse information on the dynamics. This robust method was proposed in [R. V. Kohn and F. Otto, Comm. Math. Phys., 229 (2002), pp. 375-395]. Our main analytical contribution is an interpolation inequality involving the Wasserstein distance, which characterizes the coarse shape of the energy landscape. The upper bound we obtain is in agreement with heuristic arguments and numerical simulations.

References

[1]
J. Becker, G. Grün, R. Seeman, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, Complex dewetting scenarios captured by thin‐film models, Nature Materials, 2 (2003), pp. 59–63.
[2]
A. Bertozzi, G. Grün, T. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity, 14 (2001), 1569–1592
[3]
Sergio Conti, Barbara Niethammer, Felix Otto, Coarsening rates in off‐critical mixtures, SIAM J. Math. Anal., 37 (2006), 1732–1741
[4]
Shibin Dai, Robert Pego, Universal bounds on coarsening rates for mean‐field models of phase transitions, SIAM J. Math. Anal., 37 (2005), 347–371
[5]
Shibin Dai, Robert Pego, An upper bound on the coarsening rate for mushy zones in a phase‐field model, Interfaces Free Bound., 7 (2005), 187–197
[6]
K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E., 67 (2003), p. 016302.
[7]
K. Glasner, T. Witelski, Collision versus collapse of droplets in coarsening of dewetting thin films, Phys. D, 209 (2005), 80–104
[8]
S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn‐Elhaj, and S. Schlagowski, Spinodal dewetting in liquid cristal and liquid metal films, Science, 282 (1998), pp. 916–919.
[9]
J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 2nd ed., 1992.
[10]
Robert Kohn, Felix Otto, Upper bounds on coarsening rates, Comm. Math. Phys., 229 (2002), 375–395
[11]
Robert Kohn, Xiaodong Yan, Upper bound on the coarsening rate for an epitaxial growth model, Comm. Pure Appl. Math., 56 (2003), 1549–1564
[12]
Robert Kohn, Xiaodong Yan, Coarsening rates for models of multicomponent phase separation, Interfaces Free Bound., 6 (2004), 135–149
[13]
Elliott Lieb, Michael Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, 2001xxii+346
[14]
R. Limary and P. F. Green, Late‐stage coarsening of an unstable structured liquid film, Phys. Rev. E, 66 (2002), p. 021601.
[15]
R. Limary and P. F. Green, Dynamics of droplets on the surface of a structured fluid film: Late‐stage coarsening, Langmuir, 19 (2003), pp. 2419–2424.
[16]
A. Münch, Dewetting rates of thin liquid films, J. Phys. Condens. Matter, 17 (2005), pp. S309–S318.
[17]
A. Münch, B. Wagner, Contact‐line instability of dewetting thinfilms, Phys. D, 209 (2005), 178–190
[18]
Barbara Niethammer, Felix Otto, Domain coarsening in thin films, Comm. Pure Appl. Math., 54 (2001), 361–384
[19]
A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interface Sci., 218 (1999), pp. 152–166.
[20]
A. Oron, S. H. Davis, and S. G. Bankoff, Long‐scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), pp. 932–977.
[21]
Felix Otto, Patrick Penzler, Tobias Rump, Discretisation and numerical tests of a diffuse‐interface model with Ehrlich‐Schwoebel barrier, Internat. Ser. Numer. Math., Vol. 149, Birkhäuser, Basel, 2005, 127–158
[22]
F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400
[23]
Felix Otto, Michael Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance, SIAM J. Math. Anal., 37 (2005), 1227–1255
[24]
L. M. Pismen, Spinodal dewetting in volatile liquid film, Phys. Rev. E, 70 (2004), pp. 021601‐1–021601‐9.
[25]
Len Pismen, Yves Pomeau, Mobility and interactions of weakly nonwetting droplets, Phys. Fluids, 16 (2004), 2604–2612
[26]
G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68 (1992), pp. 75–78.
[27]
G. Reiter and R. Khanna, Kinetics of autophobic dewetting of polymer films, Langmuir, 16 (2000), pp. 6351–6357.
[28]
R. Seeman, S. Herminghaus, and K. Jacobs, Gaining control of pattern formation of dewetting liquid films, J. Phys. Condens. Matter, 13 (2001), pp. 4925–4938.
[29]
A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81 (1998), pp. 3463–3466.
[30]
U. Thiele, M. G. Velarde, and K. Neuffer, Dewetting: film rupture by nucleation in the spinodal regime, Phys. Rev. Lett., 87 (2001), p. 4.
[31]
F. Vandenbrouck, M. P. Valignat, and A. M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett., 82 (1999), pp. 2693–2696.
[32]
Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, 2003xvi+370
[33]
R. Xie, A. Karim, J. F. Douglas, C. C. Han, and R. A. Weiss, Spinodal dewetting of thin polymer films, Phys. Rev. Lett., 81 (1998), pp. 1251–1254.

Index Terms

  1. Coarsening Rates for a Droplet Model: Rigorous Upper Bounds
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image SIAM Journal on Mathematical Analysis
          SIAM Journal on Mathematical Analysis  Volume 38, Issue 2
          2006
          310 pages
          ISSN:0036-1410
          DOI:10.1137/sjmaah.2006.38.issue-2
          Issue’s Table of Contents

          Publisher

          Society for Industrial and Applied Mathematics

          United States

          Publication History

          Published: 01 January 2006

          Author Tags

          1. 76A20
          2. 35K55
          3. 35Q35

          Author Tags

          1. thin film equation
          2. Wasserstein distance
          3. coarsening

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 03 Oct 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media