Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Solving Sparse Linear Systems with Sparse Backward Error

Published: 01 April 1989 Publication History

Abstract

When solving sparse linear systems, it is desirable to produce the solution of a nearby sparse problem with the same sparsity structure. This kind of backward stability helps guarantee, for example, that a problem with the same physical connectivity as the original has been solved. Theorems of Oettli, Prager [Numer Math., 6 (1964), pp. 405-409] and Skeel [Math. Comput., 35 (1980), pp. 817-832] show that one step of iterative refinement, even with single precision accumulation of residuals, guarantees such a small backward error if the final matrix is not too ill-conditioned and the solution components do not vary too much in magnitude. These results are incorporated into the stopping criterion of the iterative refinement step of a direct sparse matrix solver, and numerical experiments verify that the algorithm frequently stops after one step of iterative refinement with a componentwise relative backward error at the level of the machine precision. Furthermore, calculating this stopping criterion is very inexpensive. A condition estimator corresponding to this new backward error is discussed that provides an error estimate for the computed solution. This error estimate is generally tighter than estimates provided by standard condition estimators. We also consider the effects of using a drop tolerance during the LU decomposition.

References

[1]
A. K. Cline, C. B. Moler, G. W. Stewart, J. H. Wilkinson, An estimate for the condition number of a matrix, SIAM J. Numer. Anal., 16 (1979), 368–375
[2]
A. R. Curtis, J. K. Reid, On the automatic scaling of matrices for Gaussian elimination, J. Inst. Maths. Applics., 10 (1972), 118–124
[3]
J. W. Demmel, Underflow and the reliability of numerical software, SIAM J. Sci. Statist. Comput., 5 (1984), 887–919
[4]
J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979
[5]
I. S. Duff, MA28—a set of Fortran subroutines for sparse unsymmetric linear equations, Report, AERE R8730, Her Majesty's Stationery Office, London, 1977
[6]
I. S. Duff, A. M. Erisman, C. W. Gear, J. K. Reid, Some remarks on inverses of sparse matrices, Report, CSS 171, CSS Division, Harwell Laboratory, England, 1985, ACM SIGNUM newsletter, 23 (1988), pp. 2–8
[7]
I. S. Duff, A. M. Erisman, J. K. Reid, Direct methods for sparse matrices, Monographs on Numerical Analysis, The Clarendon Press Oxford University Press, New York, 1986xiv+341
[8]
I. S. Duff, R. G. Grimes, J. G. Lewis, Sparse matrix test problems, 1987, Report CSS 191, CSS Division, Harwell Laboratory, England; ACM Trans. Math. Software, to appear
[9]
C. W. Gear, Numerical errors in sparse linear equations, Report, UIUCDCS-F-75-885, Department of Computer Science, University of Illinois, Urbana-Champaign, IL, 1975
[10]
William W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), 311–316
[11]
Nicholas J. Higham, A survey of condition number estimation for triangular matrices, SIAM Rev., 29 (1987), 575–596
[12]
N. J. Higham, Fortran codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation, Numerical Analysis Report, 135, University of Manchester, England, 1987b
[13]
Standard for Binary Floating Point Arithmetic, IEEE, ANSI /IEEE Std 754-1985, IEEE, NY
[14]
N. J. Higham, Radix and Format Independent Standard for Floating Point Arithmetic, ANSI /IEEE Std, 854-1987, IEEE, NY, 1987
[15]
W. Kahan, why do we need a floating point arithmetic standard?, IEEE Floating Point Subcommittee Working Document, P754/81-2.8, IEEE, NY, 1981
[16]
Harry M. Markowitz, The elimination form of the inverse and its application to linear programming, Management Sci., 3 (1957), 255–269
[17]
W. Oettli, W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), 405–409
[18]
Robert D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach., 26 (1979), 494–526
[19]
Robert D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math. Comp., 35 (1980), 817–832
[20]
J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput. Mach., 8 (1961), 281–330
[21]
Z. Zlatev, J. Wasniewski, K. Schaumburg, Condition number estimators in a sparse matrix software, SIAM J. Sci. Statist. Comput., 7 (1986), 1175–1189

Cited By

View all
  • (2024)Algorithm 1050: SPEX Cholesky, LDL, and Backslash for Exactly Solving Sparse Linear SystemsACM Transactions on Mathematical Software10.1145/370059250:4(1-29)Online publication date: 11-Dec-2024
  • (2024)Fully parallel and pipelined sparse direct solver for large symmetric indefinite finite element problemsComputers & Mathematics with Applications10.1016/j.camwa.2024.10.017175:C(447-469)Online publication date: 1-Dec-2024
  • (2023)Combining Sparse Approximate Factorizations with Mixed-precision Iterative RefinementACM Transactions on Mathematical Software10.1145/358249349:1(1-29)Online publication date: 21-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications  Volume 10, Issue 2
Apr 1989
143 pages
ISSN:0895-4798
DOI:10.1137/sjmael.1989.10.issue-2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 April 1989

Author Tags

  1. 65F05
  2. 65G05
  3. 65F35

Author Tags

  1. sparse matrix
  2. backward error
  3. iterative refinement
  4. componentwise error
  5. error estimate
  6. condition number

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Algorithm 1050: SPEX Cholesky, LDL, and Backslash for Exactly Solving Sparse Linear SystemsACM Transactions on Mathematical Software10.1145/370059250:4(1-29)Online publication date: 11-Dec-2024
  • (2024)Fully parallel and pipelined sparse direct solver for large symmetric indefinite finite element problemsComputers & Mathematics with Applications10.1016/j.camwa.2024.10.017175:C(447-469)Online publication date: 1-Dec-2024
  • (2023)Combining Sparse Approximate Factorizations with Mixed-precision Iterative RefinementACM Transactions on Mathematical Software10.1145/358249349:1(1-29)Online publication date: 21-Mar-2023
  • (2023)ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear SolversProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607077(1-15)Online publication date: 12-Nov-2023
  • (2023)Software Package USPARS for Large Sparse Systems of Linear EquationsSupercomputing10.1007/978-3-031-49432-1_18(232-244)Online publication date: 25-Sep-2023
  • (2013)Accelerating Linear System Solutions Using Randomization TechniquesACM Transactions on Mathematical Software10.1145/2427023.242702539:2(1-13)Online publication date: 1-Feb-2013
  • (2007)A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equationsACM Transactions on Mathematical Software10.1145/1236463.123646533:2(10-es)Online publication date: 1-Jun-2007
  • (2005)An overview of SuperLUACM Transactions on Mathematical Software10.1145/1089014.108901731:3(302-325)Online publication date: 1-Sep-2005
  • (2005)Error Estimation in Preconditioned Conjugate GradientsBIT10.1007/s10543-005-0032-145:4(789-817)Online publication date: 1-Dec-2005
  • (2004)MA57---a code for the solution of sparse symmetric definite and indefinite systemsACM Transactions on Mathematical Software10.1145/992200.99220230:2(118-144)Online publication date: 1-Jun-2004
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media