Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices

Published: 01 July 2010 Publication History

Abstract

Hermitian plus possibly non-Hermitian low rank matrices can be efficiently reduced into Hessenberg form. The resulting Hessenberg matrix can still be written as the sum of a Hermitian plus low rank matrix. In this paper we develop a new implicit multishift $QR$-algorithm for Hessenberg matrices, which are the sum of a Hermitian plus a possibly non-Hermitian low rank correction. The proposed algorithm exploits both the symmetry and low rank structure to obtain a $QR$-step involving only $\mathcal{O}(n)$ floating point operations instead of the standard $\mathcal{O}(n^2)$ operations needed for performing a $QR$-step on a Hessenberg matrix. The algorithm is based on a suitable $\mathcal{O}(n)$ representation of the Hessenberg matrix. The low rank parts present in both the Hermitian and low rank part of the sum are compactly stored by a sequence of Givens transformations and a few vectors. Due to the new representation, we cannot apply classical deflation techniques for Hessenberg matrices. A new, efficient technique is developed to overcome this problem. Some numerical experiments based on matrices arising in applications are performed. The experiments illustrate effectiveness and accuracy of both the $QR$-algorithm and the newly developed deflation technique.

References

[1]
S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983.
[2]
D. A. Bini, L. Gemignani, and V. Y. Pan, Fast and stable QR eiegenvalue algorithms for generalized companion matrices and secular equations, Numer. Math., 100 (2005), pp. 373-408.
[3]
S. Chandrasekaran and M. Gu, Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices, Linear Algebra Appl., 313 (2000), pp. 107-114.
[4]
S. Delvaux and M. Van Barel, Structures preserved by the QR-algorithm, J. Comput. Appl. Math., 187 (2006), pp. 29-40.
[5]
S. Delvaux and M. Van Barel, A Givens-weight representation for rank structured matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1147-1170.
[6]
S. Delvaux and M. Van Barel, A Hessenberg reduction algorithm for rank structured matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 895-926.
[7]
Y. Eidelman, L. Gemignani, and I. C. Gohberg, Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbation, Numer. Algorithms, 47 (2008), pp. 253-273.
[8]
Y. Eidelman, L. Gemignani, and I. C. Gohberg, On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms, Linear Algebra Appl., 420 (2007), pp. 86-101.
[9]
D. Fasino, N. Mastronardi, and M. Van Barel, Fast and stable algorithms for reducing diagonal plus semiseparable matrices to tridiagonal and bidiagonal form, in Fast Algorithms for Structured Matrices: Theory and Applications, Contemp. Math. 323, AMS, Providence, RI, 2003, pp. 105-118.
[10]
J. G. F. Francis, The QR transformation: A unitary analogue to the LR transformation. I, Comput. J., 4 (1961), pp. 265-271.
[11]
J. G. F. Francis, The QR transformation. II, Comput. J., 4 (1962), pp. 332-345.
[12]
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
[13]
N. Mastronardi, S. Chandrasekaran, and S. Van Huffel, Fast and stable reduction of diagonal plus semi-separable matrices to tridiagonal and bidiagonal form, BIT, 41 (2003), pp. 149-157.
[14]
B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[15]
R. Vandebril and Z. Bai, An Implicit $QR$-Algorithm for Tridiagonal Plus Rank $1$ Matrices,Tech. report, Katholieke Universiteit Leuven, Leuven (Heverlee), Belgium, 2008.
[16]
R. Vandebril, M. Van Barel, and N. Mastronardi, A Note on the Recursive Calculation of Dominant Singular Subspaces, Tech. report TW393, Department of Computer Science, Katholieke Universiteit Leuven, Leuven (Heverlee), Belgium, 2003.
[17]
R. Vandebril, M. Van Barel, and N. Mastronardi, A note on the representation and definition of semiseparable matrices, Numer. Linear Algebra Appl., 12 (2005), pp. 839-858.
[18]
R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices, Volume I: Linear Systems, The Johns Hopkins University Press, Baltimore, MD, 2008.
[19]
R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices, Volume II: Eigenvalue and Singular Value Methods, The Johns Hopkins University Press, Baltimore, MD, 2008.
[20]
R. Vanderbril and G. M. Del Corso, An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices, Tech. report TR-10-06, Department of Computer Science, University of Pisa, Pisa, Italy, 2010.
[21]
D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, 2007.
[22]
D. S. Watkins, The QR algorithm revisited, SIAM Rev., 50 (2008), pp. 133-145.
[23]
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Numer. Math. Sci. Comput., Oxford University Press, New York, 1999.

Cited By

View all
  • (2020)Fast QR iterations for unitary plus low rank matricesNumerische Mathematik10.1007/s00211-019-01080-4144:1(23-53)Online publication date: 1-Jan-2020
  • (2014)Fast computation of eigenvalues of companion, comrade, and related matricesBIT10.1007/s10543-013-0449-x54:1(7-30)Online publication date: 1-Mar-2014
  • (2012)A Wilkinson-like multishift QR algorithm for symmetric eigenvalue problems and its global convergenceJournal of Computational and Applied Mathematics10.1016/j.cam.2011.04.012236:15(3556-3560)Online publication date: 1-Sep-2012

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 32, Issue 4
June 2010
752 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 July 2010

Author Tags

  1. $QR$-algorithm
  2. Givens-weight representation
  3. Hermitian plus low rank matrices
  4. implicit method
  5. multishift

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Fast QR iterations for unitary plus low rank matricesNumerische Mathematik10.1007/s00211-019-01080-4144:1(23-53)Online publication date: 1-Jan-2020
  • (2014)Fast computation of eigenvalues of companion, comrade, and related matricesBIT10.1007/s10543-013-0449-x54:1(7-30)Online publication date: 1-Mar-2014
  • (2012)A Wilkinson-like multishift QR algorithm for symmetric eigenvalue problems and its global convergenceJournal of Computational and Applied Mathematics10.1016/j.cam.2011.04.012236:15(3556-3560)Online publication date: 1-Sep-2012

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media