Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Sharp $L_2$-Norm Error Estimates for First-Order div Least-Squares Methods

Published: 01 April 2011 Publication History

Abstract

A theoretical analysis of a first-order div least-squares finite element method is presented. Our main interest is providing $L_2$-norm error estimates for the primary function $u$ and the flux $\mbox{\boldmath$$}=-\mathcal{A}\nabla u$. While there has been significant progress in the error estimates for the flux in $L_2$-norm, these estimates have drawbacks, such as requiring smooth solutions or that the error estimate for $\|\mbox{\boldmath$$}-\mbox{\boldmath$$}_h\|_0$ is coupled with the error estimate for $\|u-u_h\|_1$, where $(u_h,\mbox{\boldmath$$}_h)$ is the least squares approximate solution for $(u,\mbox{\boldmath$$}=-\mathcal{A}\nabla u)$. In this paper, with the minimum regularity assumption $u\in H^{1+\alpha}$, $\alpha>1/2$, we separate the error estimate for $\|\mbox{\boldmath$$}-\mbox{\boldmath$$}_h\|_0$ from $\|u-u_h\|_1$ and establish that $\|\mbox{\boldmath$$}-\mbox{\boldmath$$}_h\|_0$ is bounded by the best approximation for $\mbox{\boldmath$$}$ in the finite element space and $\|u-u_h\|_0$. Then, we proceed to obtain two new estimates for $\|u-u_h\|_0$. The first estimate is useful to understand how the accuracy of $\|u-u_h\|_0$ affects the accuracy of $\|\mbox{\boldmath$$}-\mbox{\boldmath$$}_h\|_0$ and the other sheds new light on the convergence behavior of $\|u-u_h\|_0$. Our analysis does not require smooth solutions and the domain is allowed to be nonconvex. The resulting error estimates are valid for both smooth and low regularity solutions and show that optimal rates of convergence can be achieved by choosing proper finite element spaces such as the Raviart-Thomas spaces for the flux $\mbox{\boldmath$$}$.

References

[1]
A. K. Aziz, R. B. Kellogg, and A. B. Stephens, Least-squares methods for elliptic systems, Math. Comp., 44 (1985), pp. 53-70.
[2]
I. Babuška, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), pp. 179-192.
[3]
P. B. Bochev and M. D. Gunzburger, On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles, SIAM J. Numer. Anal., 43 (2005), pp. 340-362.
[4]
P. B. Bochev and M. D. Gunzburger, A locally conservative least-squares method for Darcy flows, Comm. Numer. Meth. Engrg., 24 (2008), pp. 97-110.
[5]
J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp., 66 (1997), pp. 935-955.
[6]
J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, Least-squares for second-order elliptic problems, Comput. Methods Appl. Mech. Engrg., 152 (1998), pp. 195-210.
[7]
J. Brandts, Y. Chen, and J. Yang, A note on least-squares mixed finite elements in relation to standard and mised finite elements, IMA J. Numer. Anal., 26 (2006), pp. 779-789.
[8]
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Model. Math. Anal. Numer., 8 (1974), pp. 129-151.
[9]
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Spring-Verlag, Berlin, 1991.
[10]
M. Berndt, T. A. Manteuffel, S. F. McCormick, and G. Starke, Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part I, SIAM J. Numer. Anal., 43 (2005), pp. 386-408.
[11]
Z. Cai and J. Ku, The $L^2$ norm error estimates for the div least-squares methods, SIAM J. Numer. Anal., 44 (2006), pp. 1721-1734.
[12]
Z. Cai and J. Ku, Optimal error estimate for the div least-squares method with data $f\in L^2$ and application to nonlinear problems, SIAM J. Numer. Anal., 47 (2010), pp. 4098-4111.
[13]
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp. 1785-1799.
[14]
P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam, 1978.
[15]
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.
[16]
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[17]
J. Ku, Weak coupling of solutions of least-squares method, Math. Comp., 77 (2008), pp. 1323-1332.
[18]
T. Manteuffel, S. McCormick, and C. Pflaum, Improved discretization error estimates for first-order system least squares, J. Numer. Math., 11 (2003), pp. 163-177.
[19]
A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least-squares mixed finite element methods for second-order elliptic problems, SIAM J. Numer Anal., 31 (1994), pp. 1368-1377.
[20]
A. I. Pehlivanov, G. F. Carey, and P. S. Vassilevski, Least-squares mixed finite element methods for non-selfadjoint elliptic problems: I. Error extimates, Numer. Math., 72 (1996), pp. 501-522.
[21]
P.-A. Raviart and J. M. Thomas, A mixed finite element method for $2$nd order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315.
[22]
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493.

Cited By

View all
  • (2019)Local error estimates for least-squares finite element methods for first-order systemJournal of Computational and Applied Mathematics10.1016/j.cam.2015.10.029299:C(92-100)Online publication date: 3-Jan-2019
  • (2018)Numerical solutions for nonlinear elliptic problems based on first-order systemComputers & Mathematics with Applications10.1016/j.camwa.2015.02.00169:7(601-609)Online publication date: 31-Dec-2018
  • (2015)Asymptotically exact a posteriori error estimators for first-order div least-squares methods in local and global L2 normComputers & Mathematics with Applications10.1016/j.camwa.2015.05.01070:4(648-659)Online publication date: 1-Aug-2015
  • Show More Cited By

Index Terms

  1. Sharp $L_2$-Norm Error Estimates for First-Order div Least-Squares Methods
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Numerical Analysis
    SIAM Journal on Numerical Analysis  Volume 49, Issue 2
    March 2011
    489 pages

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 April 2011

    Author Tags

    1. error estimates
    2. finite element methods
    3. least-squares

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Local error estimates for least-squares finite element methods for first-order systemJournal of Computational and Applied Mathematics10.1016/j.cam.2015.10.029299:C(92-100)Online publication date: 3-Jan-2019
    • (2018)Numerical solutions for nonlinear elliptic problems based on first-order systemComputers & Mathematics with Applications10.1016/j.camwa.2015.02.00169:7(601-609)Online publication date: 31-Dec-2018
    • (2015)Asymptotically exact a posteriori error estimators for first-order div least-squares methods in local and global L2 normComputers & Mathematics with Applications10.1016/j.camwa.2015.05.01070:4(648-659)Online publication date: 1-Aug-2015
    • (2014)Supercloseness of the mixed finite element method for the primary function on unstructured meshes and its applicationsBIT10.1007/s10543-014-0494-054:4(1087-1097)Online publication date: 1-Dec-2014

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media