Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Improving Exhaustive Search Implies Superpolynomial Lower Bounds

Published: 01 January 2013 Publication History
  • Get Citation Alerts
  • Abstract

    The P vs. NP problem arose from the question of whether exhaustive search is necessary for problems with short verifiable solutions. We do not know if even a slight algorithmic improvement over exhaustive search is universally possible for all NP problems, and to date no major consequences have been derived from the assumption that an improvement exists. We show that there are natural NP and BPP problems for which minor algorithmic improvements over the trivial deterministic simulation already entail lower bounds such as ${\sf NEXP} \not\subseteq {\sf P}/{\rm poly}$ and ${\sf LOGSPACE} \neq {\sf NP}$. These results are especially interesting given that similar improvements have been found for many other hard problems. Optimistically, one might hope our results suggest a new path to lower bounds; pessimistically, they show that carrying out the seemingly modest program of finding slightly better algorithms for all search problems may be extremely difficult (if not impossible). We also prove unconditional superpolynomial time-space lower bounds for improving on exhaustive search: there is a problem verifiable with $k(n)$ length witnesses in $O(n^a)$ time (for some $a$ and some function $k(n) \leq n$) that cannot be solved in $k(n)^c n^{a+o(1)}$ time and $k(n)^c n^{o(1)}$ space, for every $c \geq 1$. While such problems can always be solved by exhaustive search in $O(2^{k(n)} n^a)$ time and $O(k(n)+ n^a)$ space, we can prove a superpolynomial lower bound in the parameter $k(n)$ when space usage is restricted.

    References

    [1]
    S. Aaronson and A. Wigderson, Algebrization: A new barrier in complexity theory, Trans. Comput. Theory, 1 (2009).
    [2]
    K. Abrahamson, R. G. Downey, and M. R. Fellows, Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogs, Ann. Pure Appl. Logic, 73 (1995), pp. 235--276.
    [3]
    S. Arora and B. Barak, Computational Complexity---A Modern Approach, Cambridge University Press, London, 2009.
    [4]
    L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential simulations unless EXPTIME has publishable proofs, Comput. Complexity, 3 (1993), pp. 307--318.
    [5]
    T. P. Baker, J. Gill, and R. Solovay, Relativizations of the P = NP question, SIAM J. Comput., 4 (1975), pp. 431--442.
    [6]
    B. Barak, A probabilistic-time hierarchy theorem for slightly non-uniform algorithms, in Proc. RANDOM, Springer Lecture Notes in Comupt. Sci. 2483, 2002, pp. 194--208.
    [7]
    E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Short PCPs verifiable in polylogarithmic time, in Proc. IEEE Conference on Computational Complexity, 2005, pp. 120--134.
    [8]
    S. Bloch, J. F. Buss, and J. Goldsmith, Sharply bounded alternation and quasilinear time, Theory Comput. Syst., 31 (1998), pp. 187--214.
    [9]
    H. Buhrman, L. Fortnow, and T. Thierauf, Nonrelativizing separations, in Proc. IEEE Conference on Computational Complexity, 1998, pp. 8--12.
    [10]
    J. F. Buss and J. Goldsmith, Nondeterminism within P$^*$, SIAM J. Comput., 22 (1993), pp. 560--572.
    [11]
    L. Cai and D. Juedes, On the existence of subexponential parameterized algorithms, J. Comput. System Sci., 67 (2003), pp. 789--807.
    [12]
    L. Cai and J. Chen, On the amount of nondeterminism and the power of verifying, SIAM J. Comput., 26 (1997), pp. 733--750.
    [13]
    C. Calabro, R. Impagliazzo, and R. Paturi, A duality between clause width and clause density for SAT, in Proc. IEEE Conference on Computational Complexity, 2006, pp. 252--260.
    [14]
    C. Calabro, R. Impagliazzo, and R. Paturi, The complexity of satisfiability of small depth circuits, in Proceedings of the International Workshop on Parameterized and Exact Computation, Springer Lecture Notes in Comput. Sci. 5917, 2009, pp. 75--85.
    [15]
    J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. A. Kanj, and G. Xia, Tight lower bounds for certain parameterized NP-hard problems, Inform. Comput., 201 (2006), pp. 216--231.
    [16]
    J. Chen, X. Huang, I. A. Kanj, and G. Xia, Strong computational lower bounds via parameterized complexity, J. Comput. System Sci., 72 (2006), pp. 1346--1367.
    [17]
    Y. Chen and M. Grohe, An isomorphism between subexponential and parameterized complexity theory, SIAM J. Comput., 37 (2007), pp. 1228--1258.
    [18]
    A. Cobham, The recognition problem for the set of perfect squares, in Conference Record of the Seventh Annual Symposium on Switching and Automata Theory, IEEE Computer Society, Washington, DC, 1966, pp. 78--87.
    [19]
    E. Dantsin and E. A. Hirsch, Worst-case upper bounds, in Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., IOS Press, Amsterdam, The Netherlands, 2008, pp. 341--362.
    [20]
    R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, Berlin, 1999.
    [21]
    M. R. Fellows and M. A. Langston, On search, decision and the efficiency of polynomial-time algorithms, in Proc. ACM Symposium on Theory of Computing, 1989, pp. 501--512.
    [22]
    J. Flum, M. Grohe, and M. Weyer, Bounded fixed-parameter tractability and $\log^2 n$ nondeterministic bits, J. Comput. System Sci., 72 (2006), pp. 34--71.
    [23]
    J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, New York, 2006.
    [24]
    L. Fortnow, Comparing notions of full derandomization, in Proc. IEEE Conference on Computational Complexity, 2001, pp. 28--34.
    [25]
    L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas, Time-space lower bounds for satisfiability, J. ACM, 52 (2005), pp. 835--865.
    [26]
    L. Fortnow and A. Klivans, Efficient learning algorithms yield circuit lower bounds, J. Comput. System Sci., 75 (2009), pp. 27--36.
    [27]
    A. Gajentaan and M. H. Overmars, On a class of ${O}(n^2)$ problems in computational geometry, Comput. Geom., 5 (1995), pp. 165--185.
    [28]
    Y. Gurevich and S. Shelah, Nearly linear time, Logic at Botik '89, Lecture Notes in Comput. Sci. 363, Springer-Verlag, Berlin, 1989, pp. 108--118.
    [29]
    J. Hartmanis, Gödel, von Neumann, and the P=NP problem, Bull. Eur. Assoc. Theor. Comput. Sci., 38 (1989), pp. 101--107. (See also: M. Sipser, The history and status of the P versus NP question, in Proc. ACM Symposium on Theory of Computing, 1992, pp. 603--618).
    [30]
    J. Hastad, The shrinkage exponent of de Morgan formulas is 2, SIAM J. Comput., 27 (1998), pp. 48--64.
    [31]
    R. Impagliazzo, personal communication, 2010.
    [32]
    R. Impagliazzo, V. Kabanets, and A. Wigderson, In search of an easy witness: Exponential time versus probabilistic polynomial time, J. Comput. System Sci., 65 (2002), pp. 672--694.
    [33]
    R. Impagliazzo and R. Paturi, On the complexity of $k$-SAT, J. Comput. System Sci., 62 (2001), pp. 367--375.
    [34]
    R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. System Sci., 63 (2001), pp. 512--530.
    [35]
    V. Kabanets and J.-Y. Cai, Circuit minimization problem, in Proc. ACM Symposium on Theory of Computing, 2000, pp. 73--79.
    [36]
    V. Kabanets, C. Rackoff, and S. A. Cook, Efficiently approximable real-valued functions, Electronic Colloquium on Computational Complexity, TR00-034, 2000.
    [37]
    V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complexity, 13 (2004), pp. 1--46.
    [38]
    S. Kalyanasundaram, R. J. Lipton, K. W. Regan, and F. Shokrieh, Improved simulation of nondeterministic Turing machines, in Proc. MFCS, Lecture Notes in Comput. Sci. 6281, Springer, New York, 2010, pp. 453--464.
    [39]
    R. Kannan, Towards separating nondeterminism from determinism, Math. Syst. Theory, 17 (1984), pp. 29--45.
    [40]
    G. Karakostas, R. J. Lipton, and A. Viglas, On the complexity of intersecting finite state automata and NL versus NP, Theoret. Comput. Sci., 302 (2003), pp. 257--274.
    [41]
    R. M. Karp and R. J. Lipton, Some connections between nonuniform and uniform complexity classes, in Proc. ACM Symposium on Theory of Computing, 1980, pp. 302--309.
    [42]
    C. M. R. Kintala and P. C. Fisher, Computations with a restricted number of nondeterministic steps (Extended Abstract), in Proc. ACM Symposium on Theory of Computing, 1977, pp. 178--185.
    [43]
    A. Klivans and D. van Melkebeek, Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses, SIAM J. Comput., 31 (2002), pp. 1501--1526.
    [44]
    D. Kozen, Lower bounds for natural proof systems, in Proc. IEEE Symposium on Foundations of Computer Science, 1977, pp. 254--266.
    [45]
    R. J. Lipton, An approach to the P=NP question?, Weblog post available at http://rjlipton.wordpress.com/2009/10/02/an-approach-to-the-pnp-question/.
    [46]
    M. Luby and B. Velickovic, On deterministic approximation of DNF, Algorithmica, 16 (1996), pp. 415--433.
    [47]
    D. van Melkebeek and R. Santhanam, Holographic proofs and derandomization, SIAM J. Comput., 35 (2005), pp. 59--90.
    [48]
    D. van Melkebeek, A survey of lower bounds for satisfiability and related problems, Found. Trends Theoret. Comput. Sci., 2 (2007), pp. 197--303.
    [49]
    O. Meir, Combinatorial PCPs with efficient verifiers, in Proc. IEEE Symposium on Foundations of Computer Science, 2009, pp. 463--471.
    [50]
    K. Mulmuley, On P vs. NP, Geometric Complexity Theory, and the Flip I: A high level view, CoRR abs/0709.0748, 2007.
    [51]
    K. Mulmuley and M. A. Sohoni, Geometric Complexity Theory I: An approach to the P vs. NP and related problems, SIAM J. Comput., 31 (2001), pp. 496--526.
    [52]
    K. Mulmuley and M. A. Sohoni, Geometric Complexity Theory II: Towards explicit obstructions for embeddings among class varieties, SIAM J. Comput., 38 (2008), pp. 1175--1206.
    [53]
    M. Pǎtraşcu and R. Williams, On the possibility of faster SAT algorithms, in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2010, pp. 1065--1075.
    [54]
    N. Pippenger and M. J. Fischer, Relations among complexity measures, J. ACM, 26 (1979), pp. 361--381.
    [55]
    A. A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24--35.
    [56]
    R. Schuler, An algorithm for the satisfiability problem of formulas in conjunctive normal form, J. Algorithms, 54 (2005), pp. 40--44.
    [57]
    M. Sipser, Introduction to the Theory of Computation, Thomson Course Technology, Boston, MA, 2005.
    [58]
    S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865--877.
    [59]
    I. Tourlakis, Time-space tradeoffs for SAT on nonuniform machines, J. Comput. System Sci., 63 (2001), pp. 268--287.
    [60]
    P. Traxler, The time complexity of constraint satisfaction, in Proc. Int'l Workshop on Parameterized and Exact Computation, Lecture Notes in Comput. Sci. 5018, Springer, New York, 2008, pp. 190--201.
    [61]
    G. Tseitin, On the complexity of derivation in propositional calculus, in Structures in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics, A. O. Slisenko, ed., 1968, pp. 115--125.
    [62]
    I. Wegener, The Complexity of Boolean Functions, John Wiley and Sons, New York, 1987.
    [63]
    R. Williams, Time-space lower bounds for counting NP solutions modulo integers, Comput. Complexity, 17 (2008), pp. 179--219.
    [64]
    R. Williams, Alternation-trading proofs, linear programming, and lower bounds, in Proc. Symposium on Theoretical Aspects of Computer Science, 2010, pp. 669--680.
    [65]
    R. Williams, Non-uniform ACC circuit lower bounds, IEEE Conference on Computational Complexity, 2011, pp. 115--125.
    [66]
    S. Zak, A Turing machine hierarchy, Theoret. Comput. Sci., 26 (1983), pp. 327--333.
    [67]
    F. Zane, Circuits, CNFs, and satisfiability, Ph.D. thesis, University of California at San Diego, San Diego, CA, 1998.

    Cited By

    View all
    • (2024)Beating Brute Force for Compression ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649778(659-670)Online publication date: 10-Jun-2024
    • (2024)Self-Improvement for Circuit-Analysis ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649723(1374-1385)Online publication date: 10-Jun-2024
    • (2024)Hardness of Range Avoidance and Remote Point for Restricted Circuits via CryptographyProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649602(620-629)Online publication date: 10-Jun-2024
    • Show More Cited By

    Index Terms

    1. Improving Exhaustive Search Implies Superpolynomial Lower Bounds
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Computing
        SIAM Journal on Computing  Volume 42, Issue 3
        Special Section on the Forty-Second Annual ACM Symposium on Theory of Computing (STOC 2010)
        2013
        698 pages
        ISSN:0097-5397
        DOI:10.1137/smjcat.42.3
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2013

        Author Tags

        1. lower bounds
        2. improved exponential algorithms
        3. exact algorithms
        4. time-space trade-offs
        5. circuit complexity

        Author Tags

        1. 68Q15
        2. 68Q17

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Beating Brute Force for Compression ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649778(659-670)Online publication date: 10-Jun-2024
        • (2024)Self-Improvement for Circuit-Analysis ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649723(1374-1385)Online publication date: 10-Jun-2024
        • (2024)Hardness of Range Avoidance and Remote Point for Restricted Circuits via CryptographyProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649602(620-629)Online publication date: 10-Jun-2024
        • (2023)Bounded RelativizationProceedings of the conference on Proceedings of the 38th Computational Complexity Conference10.4230/LIPIcs.CCC.2023.6(1-45)Online publication date: 17-Jul-2023
        • (2023)Guest Column: New ways of studying the BPP = P conjectureACM SIGACT News10.1145/3604943.360495054:2(44-69)Online publication date: 14-Jun-2023
        • (2023)On Exponential-time Hypotheses, Derandomization, and Circuit Lower BoundsJournal of the ACM10.1145/359358170:4(1-62)Online publication date: 20-Apr-2023
        • (2023)When Arthur Has Neither Random Coins Nor Time to Spare: Superfast Derandomization of Proof SystemsProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585215(60-69)Online publication date: 2-Jun-2023
        • (2023)Range Avoidance, Remote Point, and Hard Partial Truth Table via Satisfying-Pairs AlgorithmsProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585147(1058-1066)Online publication date: 2-Jun-2023
        • (2023)Algorithms and Lower Bounds for Comparator Circuits from ShrinkageAlgorithmica10.1007/s00453-022-01091-y85:7(2131-2155)Online publication date: 13-Jan-2023
        • (2022)Derandomization from time-space tradeoffsProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.37(1-26)Online publication date: 20-Jul-2022
        • Show More Cited By

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media