Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Fourth-Order Accurate Finite-Volume Method with Structured Adaptive Mesh Refinement for Solving the Advection-Diffusion Equation

Published: 01 April 2012 Publication History

Abstract

We present a fourth-order accurate algorithm for solving Poisson's equation, the heat equation, and the advection-diffusion equation on a hierarchy of block-structured, adaptively refined grids. For spatial discretization, finite-volume stencils are derived for the divergence operator and Laplacian operator in the context of structured adaptive mesh refinement and a variety of boundary conditions; the resulting linear system is solved with a multigrid algorithm. For time integration, we couple the elliptic solver to a fourth-order accurate Runge-Kutta method, introduced by Kennedy and Carpenter [Appl. Numer. Math., 44 (2003), pp. 139-181], which enables us to treat the nonstiff advection term explicitly and the stiff diffusion term implicitly. We demonstrate the spatial and temporal accuracy by comparing results with analytical solutions. Because of the general formulation of the approach, the algorithm is easily extensible to more complex physical systems.

References

[1]
M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson's equation, J. Comput. Phys., 209 (2005), pp. 1-18.
[2]
M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1989), pp. 64-84.
[3]
A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986), pp. 23-56.
[4]
W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia, 2000.
[5]
D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 168 (2001), pp. 464-499.
[6]
M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math., 37 (2001), pp. 535-549.
[7]
P. Colella, M. R. Dorr, J. A. F. Hittinger, and D. F. Martin, High-order, finite-volume methods in mapped coordinates, J. Comput. Phys., 230 (2011), pp. 2952-2976.
[8]
P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54 (1984), pp. 174-201.
[9]
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
[10]
H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson's equation on irregular domains, J. Comput. Phys., 147 (1998), pp. 60-85.
[11]
S. Y. Kadioglu, R. Klein, and M. L. Minion, A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics, J. Comput. Phys., 227 (2009), pp. 2012-2043.
[12]
C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139-181.
[13]
D. F. Martin, P. Colella, and D. Graves, A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions, J. Comput. Phys., 227 (2008), pp. 1863-1886.
[14]
P. McCorquodale and P. Colella, A high-order finite-volume method for hyperbolic conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6 (2011), pp. 1-25.
[15]
M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., 1 (2003), pp. 471-500.
[16]
M. L. Minion, Semi-implicit projection methods for incompressible flow based on spectral deferred corrections, Appl. Numer. Math., 48 (2004), pp. 369-387.
[17]
K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Appl. Math. Math. Comput. 12, Chapman & Hall, London, 1996.
[18]
M. Stynes, Steady-state convection-diffusion problems, Acta Numer., 14 (2005), pp. 445-508.
[19]
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, CA, 2001.
[20]
J. Wilkening, Math $228$A: Numerical Solutions of Differential Equations, lecture notes, http://math.berkeley.edu/$\!_{^{\sim}}\!$wilken/228A.F07/ (2007).
[21]
S. T. Zalesak, A physical interpretation of the Richtmyer two-step Lax-Wendroff scheme, and its generalization to higher spatial order, in Advances in Computer Methods for Partial Differential Equations V, R. Vichnevetsky and R. S. Stepleman, eds., Proceedings of the Fifth IMACS International Symposium on Computer Methods for Partial Differential Equations, 1984, pp. 491-496.
[22]
Q. Zhang, High-order, multidimensional, and conservative coarse-fine interpolation for adaptive mesh refinement, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 3159-3168.
[23]
Q. Zhang and P. L.-F. Liu, A new interface tracking method: The polygonal area mapping method, J. Comput. Phys., 227 (2008), pp. 4063-4088.
[24]
Q. Zhang and P. L.-F. Liu, Handling solid-fluid interfaces for viscous flows: Explicit jump approximation vs. ghost cell approaches, J. Comput. Phys., 229 (2010), pp. 4225-4246.

Cited By

View all
  • (2020)A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamicsComputing and Visualization in Science10.1007/s00791-020-00334-123:1-4Online publication date: 27-Sep-2020
  • (2019)Development of immersed boundary computational aeroacoustic prediction capabilities for open-rotor noiseJournal of Computational Physics10.1016/j.jcp.2019.02.011388:C(690-716)Online publication date: 1-Jul-2019
  • (2017)A multigrid AMR algorithm for the study of magnetic reconnectionJournal of Computational Physics10.1016/j.jcp.2017.08.046351:C(511-533)Online publication date: 15-Dec-2017
  • Show More Cited By
  1. A Fourth-Order Accurate Finite-Volume Method with Structured Adaptive Mesh Refinement for Solving the Advection-Diffusion Equation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Scientific Computing
    SIAM Journal on Scientific Computing  Volume 34, Issue 2
    April 2012
    829 pages

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 April 2012

    Author Tags

    1. Poisson's equation
    2. adaptive mesh refinement
    3. additive Runge-Kutta method
    4. conservation form
    5. finite volume
    6. the advection-diffusion equation
    7. the heat equation

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamicsComputing and Visualization in Science10.1007/s00791-020-00334-123:1-4Online publication date: 27-Sep-2020
    • (2019)Development of immersed boundary computational aeroacoustic prediction capabilities for open-rotor noiseJournal of Computational Physics10.1016/j.jcp.2019.02.011388:C(690-716)Online publication date: 1-Jul-2019
    • (2017)A multigrid AMR algorithm for the study of magnetic reconnectionJournal of Computational Physics10.1016/j.jcp.2017.08.046351:C(511-533)Online publication date: 15-Dec-2017
    • (2017)High-order finite-volume solutions of the steady-state advectiondiffusion equation with nonlinear Robin boundary conditionsJournal of Computational Physics10.1016/j.jcp.2017.05.023345:C(358-372)Online publication date: 15-Sep-2017
    • (2017)The inverse distance weighted interpolation applied to a particular form of the path tubes MethodApplied Mathematics and Computation10.1016/j.amc.2017.01.053304:C(114-135)Online publication date: 1-Jul-2017
    • (2016)GePUPJournal of Scientific Computing10.1007/s10915-015-0122-467:3(1134-1180)Online publication date: 1-Jun-2016
    • (2015)Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma PhysicsJournal of Scientific Computing10.1007/s10915-015-9999-165:3(1091-1128)Online publication date: 1-Dec-2015

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media