Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Implicit-Explicit Runge--Kutta Schemes for Numerical Discretization of Optimal Control Problems

Published: 01 January 2013 Publication History

Abstract

Implicit-explicit (IMEX) Runge--Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge--Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge--Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.

References

[1]
U. Ascher, S. Ruuth, and R. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), pp. 151--167.
[2]
M. K. Banda and M. Herty, Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws, Comput. Optim. Appl., 51 (2012), pp. 909--930.
[3]
J. F. Bonnans and J. Laurent-Varin, Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, Numer. Math., 103 (2006), pp. 1--10.
[4]
S. Boscarino, L. Pareschi, and G. Russo, Implicit-explicit Runge--Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), pp. A22--A51.
[5]
M. Chyba, E. Hairer, and G. Vilmart, The role of symplectic integrators in optimal control, Optimal Control Appl. Methods, 30 (2009), pp. 367--382.
[6]
G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge--Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal., 51 (2013), pp. 1064--1087.
[7]
A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2001), pp. 173--203
[8]
A. L. Dontchev, W. W. Hager, and V. M. Veliov, Second-order Runge--Kutta approximations in control constrained optimal control, SIAM J. Numer. Anal., 38 (2000), pp. 202--226
[9]
W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 87 (2000), pp. 247--282.
[10]
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer Ser. Comput. Math., Springer, New York, 2006.
[11]
E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations, Part I, Nonstiff Problems, 2nd ed., Springer Ser. Comput. Math., Springer, New York, 1993.
[12]
M. Herty and V. Schleper, Time discretizations for numerical optimization of hyperbolic problems, Appl. Math. Comput., 218 (2011), pp. 183--194.
[13]
M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, 1980.
[14]
I. Higueras, Strong stability for additive Runge--Kutta methods, SIAM J. Numer. Anal., 44 (2006), pp. 1735--1758.
[15]
L. Jay, Symplectic partitioned Runge--Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal., 33 (1996), pp. 368--387.
[16]
C. Y. Kaya, Inexact restoration for Runge--Kutta discretization of optimal control problems, SIAM J. Numer. Anal., 48 (2010), pp. 1492--1517.
[17]
C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139--181.
[18]
J. Lang and J. Verwer, W-Methods in Optimal Control, Preprint, TU Darmstadt, 2011,
[19]
S. Ober-Blöbaum, O. Junge, and J. E. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 322--352.
[20]
L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129--155.
[21]
L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, in Recent Trends in Numerical Analysis, L. Brugnano and D. Trigiante, eds., Adv. Theory Comput. Math. 3, Nova Sci. Publ., Huntington, NY, 2001, pp. 269--289.
[22]
J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), pp. 877--883.
[23]
J. M. Sanz-Serna and L. Abia, Order conditions for canonical Runge--Kutta schemes, SIAM J. Numer. Anal., 28 (1991), pp. 1081--1096.
[24]
J. L. Troutman, Variational Calculus and Optimal Control, Springer, New York, 1996.
[25]
A. Walther, Automatic differentiation of explicit Runge--Kutta methods for optimal control, J. Comput. Optim. Appl., 36 (2007), pp. 83--108.

Cited By

View all
  • (2024)Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal ControlJournal of Optimization Theory and Applications10.1007/s10957-024-02541-z203:1(985-1026)Online publication date: 1-Oct-2024
  • (2019)Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion ProblemsJournal of Scientific Computing10.1007/s10915-019-01072-481:3(2080-2114)Online publication date: 1-Dec-2019

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 51, Issue 4
2013
594 pages
ISSN:0036-1429
DOI:10.1137/sjnaam.51.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2013

Author Tags

  1. IMEX schemes
  2. optimal control
  3. symplectic methods
  4. Runge--Kutta methods

Author Tags

  1. 65K
  2. 49M25
  3. 65L06

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal ControlJournal of Optimization Theory and Applications10.1007/s10957-024-02541-z203:1(985-1026)Online publication date: 1-Oct-2024
  • (2019)Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion ProblemsJournal of Scientific Computing10.1007/s10915-019-01072-481:3(2080-2114)Online publication date: 1-Dec-2019

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media