Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A $4n$-Point Elliptic Interpolation Formula and its Applications

Published: 01 January 2017 Publication History

Abstract

In this paper, using the technique of the divided difference operators, we introduce a $4n$-point elliptic interpolation formula. Some applications of our interpolation formula to elliptic and basic hypergeometric series are given.

References

[1]
S.H.L. Chen and A.M. Fu, A $2n$-point interpolation formula with its applications to $q$-identities, Discrete Math., 311 (2011), pp. 1793--1802.
[2]
J.F. van Diejen and V.P. Spiridonov, Elliptic Selberg integrals, Int. Math. Res. Not. IMRN, 2001 (2001), pp. 1083--1110.
[3]
I.B. Frenkel and V.G. Turaev, Elliptic solutions of the Yang--Baxter equation and modular hypergeometric functions, The Arnold-Gelfand Mathematical Seminars, Birkhäuser, Boston, 1997, pp. 171--204.
[4]
G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia Math. Appl. 96, Cambridge University Press, Cambridge, 2004.
[5]
G. Gasper and M.J. Schlosser, Summation, transformation, and expansion formulas for multibasic theta hypergeometric series, Adv. Stud. Contemp. Math. (Kyungshang), 11 (2005), pp. 67--84.
[6]
Y. Kajihara and M. Noumi, Multiple elliptic hypergeometric series. An approach from the Cauchy determinant, Indag. Math. (N.S.), 14 (2003), pp. 395--421.
[7]
Z.G. Liu, An expansion formula for $q$-series and applications, The Ramanujan J., 6 (2002), pp. 429--447.
[8]
Z.G. Liu, Some operator identities and $q$-series transformation formulas, Discrete Math., 265 (2003), pp. 119--139.
[9]
Z.G. Liu, Two $q$-difference equations and $q$-operator identities, J. Difference Equ. Appl., 16 (2010), pp. 1293--1307.
[10]
Z.G. Liu, A $q$-series expansion formula and the Askey--Wilson polynomials, Ramanujan J., 30 (2013), pp. 193--210.
[11]
Z.G. Liu, On the $q$-derivative and $q$-series expansions, Int. J. Number Theory, 9 (2013), pp. 2069--2089.
[12]
H. Rosengren, Elliptic hypergeometric series on root systems, Adv. Math., 181 (2004), pp. 417--447.
[13]
H. Rosengren, New transformations for elliptic hypergeometric series on the root system $A_n$, Ramanujan J., 12 (2006), pp. 155--166.
[14]
M. Schlosser, Summation theorems for multidimensional basic hypergeometric series by determinant evaluations, Discrete Math., 210 (2000), pp. 151--169.
[15]
V.P. Spiridonov, Elliptic Hypergeometric Functions, Habilitation thesis, JINR, Dubna, 2004.
[16]
V.P. Spiridonov, Classical elliptic hypergeometric functions and their applications, in Elliptic Integrable Systems, M. Noumi and K. Takasaki, eds., Rokko Lectures in Math. 18, Kobe University, 2005, pp. 253--287.
[17]
V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys, 63 (2008), pp. 405--472.
[18]
V.P. Spiridonov and A.S. Zhedanov, Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can., 22 (2000), pp. 70--76.
[19]
S.O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx., 18 (2002), pp. 479--502.
[20]
S.O. Warnaar, Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.), 14 (2003), pp. 571--588.
[21]
S.O. Warnaar, Summation formulae for elliptic hypergeometric series, Proc. Amer. Math. Soc., 133 (2005), pp. 519--527.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 31, Issue 2
DOI:10.1137/sjdmec.31.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. elliptic interpolation formula
  2. divided difference operators
  3. basic hypergeometric series
  4. elliptic hypergeometric series

Author Tags

  1. 03C40
  2. 05E05
  3. 33D15
  4. 33E05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media