Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On the General Position Subset Selection Problem

Published: 01 January 2013 Publication History

Abstract

Let $f(n,\ell)$ be the maximum integer such that every set of $n$ points in the plane with at most $\ell$ collinear contains a subset of $f(n,\ell)$ points with no three collinear. First we prove that if $\ell\leqslant O(\sqrt{n})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n/\ln\ell})$. Second we prove that if $\ell\leqslant O(n^{(1-\epsilon)/2})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n\log_\ell n})$, which implies all previously known lower bounds on $f(n,\ell)$ and improves them when $\ell$ is not fixed. A more general problem is to consider subsets with at most $k$ collinear points in a point set with at most $\ell$ collinear. We also prove analogous results in this setting.

References

[1]
P. Brass, On point sets without $k$ collinear points, in Discrete Geometry, Monogr. Textbooks Pure Appl. Math. 253, Dekker, New York, 2003, pp. 185--192.
[2]
P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
[3]
V. Chvátal, Remarks on a problem of Moser, Canad. Math. Bull., 15 (1972), pp. 19--21.
[4]
H. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
[5]
R. A. Duke, H. Lefmann, and V. Rödl, On uncrowded hypergraphs, Random Structures Algorithms, 6 (1995), pp. 209--212.
[6]
G. Elekes, A note on a problem of Erdös on right angles, Discrete Math., 309 (2009), pp. 5253--5254.
[7]
K. F. Roth, On a problem of Heilbronn, J. London Math. Soc., 26 (1951), pp. 198--204 (appendix by P. Erdös).
[8]
P. Erdös, On some metric and combinatorial geometric problems, Discrete Math., 60 (1986), pp. 147--153.
[9]
P. Erdös, Some old and new problems in combinatorial geometry, in Applications of Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM, Philadelphia, 1988, pp. 32--37.
[10]
Z. Füredi, Maximal independent subsets in Steiner systems and in planar sets, SIAM J. Discrete Math., 4 (1991), pp. 196--199.
[11]
H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem for $k=3$, Discrete Math., 75 (1989), pp. 227--241.
[12]
H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Anal. Math., 57 (1991), pp. 64--119.
[13]
T. Gowers, A Geometric Ramsey Problem, http://mathoverflow.net/questions/50928/a-geometric-ramsey-problem; accessed July 2012.
[14]
R. R. Hall, T. H. Jackson, A. Sudbery, and K. Wild, Some advances in the no-three-in-line problem, J. Combin. Theory Ser. A, 18 (1975), pp. 336--341.
[15]
H. Lefmann, Distributions of points in the unit square and large $k$-gons, European J. Combin., 29 (2008), pp. 946--965.
[16]
H. Lefmann, Extensions of the No-Three-in-Line Problem, preprint, 2012; available online from http://www.tu-chemnitz.de/informatik/ThIS/downloads/publications/lefmann_ no_three_submitted.pdf.
[17]
L. Moser, Problem P.170, Canad. Math. Bull., 13 (1970), p. 268.
[18]
J. Pach and M. Sharir, Repeated angles in the plane and related problems, J. Combin. Theory Ser. A, 59 (1992), pp. 12--22.
[19]
J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica, 17 (1997), pp. 427--439.
[20]
K. T. Phelps and V. Rödl, Steiner triple systems with minimum independence number, Ars Combin., 21 (1986), pp. 167--172.
[21]
D. H. J. Polymath, Density Hales-Jewett and Moser numbers, in An Irregular Mind, Bolyai Soc. Math. Stud. 21, János Bolyai Mathematical Society, Budapest, 2010, pp. 689--753.
[22]
V. Rödl and E. Šiňajová, Note on independent sets in Steiner systems, Random Structures Algorithms, 5 (1994), pp. 183--190.
[23]
J. Spencer, Turán's theorem for $k$-graphs, Discrete Math., 2 (1972), pp. 183--186.
[24]
B. Sudakov, Large $K_r$-free subgraphs in $K_s$-free graphs and some other Ramsey-type problems, Random Structures Algorithms, 26 (2005), pp. 253--265.
[25]
E. Szemerédi and W. T. Trotter, Jr., Extremal problems in discrete geometry, Combinatorica, 3 (1983), pp. 381--392.
[26]
T. Tao and V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math. 105, Cambridge University Press, Cambridge, UK, 2006.
[27]
D. R. Wood, A note on colouring the plane grid, Geombinatorics, 13 (2004), pp. 193--196.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 27, Issue 4
2013
528 pages
ISSN:0895-4801
DOI:10.1137/sjdmec.27.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2013

Author Tags

  1. general position
  2. Erdös problems
  3. discrete geometry

Author Tag

  1. 52C10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media