Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On the Queue Number of Planar Graphs

Published: 01 January 2013 Publication History

Abstract

We prove that planar graphs have $O(\log^2 n)$ queue number, thus improving upon the previous $O(\sqrt n)$ upper bound. Consequently, planar graphs admit three-dimensional straight-line crossing-free grid drawings in $O(n \log^8 n)$ volume, thus improving upon the previous $O(n^{3/2})$ upper bound.

References

[1]
S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Scheduling tree-dags using FIFO queues: A control-memory trade-off, J. Parallel Distributed Comput., 33 (1996), pp. 55--68.
[2]
O. V. Borodin, On acyclic colourings of planar graphs, Discrete Math., 25 (1979), pp. 211--236.
[3]
F. J. Brandenburg, D. Eppstein, M. T. Goodrich, S. G. Kobourov, G. Liotta, and P. Mutzel, Selected open problems in graph drawing, in Graph Drawing (GD '03), G. Liotta, ed., Lecture Notes in Comput. Sci. 2912, Springer, New York, 2004, pp. 515--539.
[4]
J. F. Buss and P. W. Shor, On the pagenumber of planar graphs, in Proceedings of Symposium on Theory of Computing (STOC '84), ACM, 1984, pp. 98--100.
[5]
R. F. Cohen, P. Eades, T. Lin, and F. Ruskey, Three-dimensional graph drawing, Algorithmica, 17 (1997), pp. 199--208.
[6]
E. D. Demaine, J. S. B. Mitchell, and J. O'Rourke, The Open Problems Project, http://maven.smith.edu/$\sim$orourke/TOPP/Welcome.html.
[7]
G. Di Battista, F. Frati, and J. Pach, On the queue number of planar graphs, in Proceedings of Foundations of Computer Science (FOCS '10), 2010, pp. 365--374.
[8]
V. Dujmović, P. Morin, and D. R. Wood, Layout of graphs with bounded tree-width, SIAM J. Comput., 34 (2005), pp. 553--579.
[9]
V. Dujmović, P. Morin, and D. R. Wood, Layered Separators in Minor-Closed Families with Applications, CoRR abs/1306.1595, 2013.
[10]
V. Dujmović and D. R. Wood, On linear layouts of graphs, Discrete Math. Theoret. Comput. Sci., 6 (2004), pp. 339--358.
[11]
V. Dujmović and D. R. Wood, Three-dimensional grid drawings with sub-quadratic volume, Towards a Theory of Geometric Graphs, J. Pach, ed., Contemp. Math., AMS, Providence, RI, 2004, pp. 55--66.
[12]
V. Dujmović and D. R. Wood, Stacks, queues and tracks: Layouts of graph subdivisions, Discrete Math. Theoret. Comput. Sci., 7 (2005), pp. 155--202.
[13]
V. Dujmović, Track Layouts of Graphs, Ph.D. thesis, School of Computer Science, McGill University, Montreal, Canada, 2003.
[14]
V. Dujmović, Graph Layouts via Layered Separators, CoRR abs/1302.0304, 2013.
[15]
T. Endo, The pagenumber of toroidal graphs is at most seven, Discrete Math., 175 (1997), pp. 87--96.
[16]
H. Enomoto, T. Nakamigawa, and K. Ota, On the pagenumber of complete bipartite graphs, J. Combin. Theory Ser. B, 71 (1997), pp. 111--120.
[17]
S. Felsner, G. Liotta, and S. K. Wismath, Straight-line drawings on restricted integer grids in two and three dimensions, J. Graph Algorithms Appl., 7 (2003), pp. 363--398.
[18]
R. A. Games, Optimal book embeddings of the FFT, Benes, and barrel shifter networks, Algorithmica, 1 (1986), pp. 233--250.
[19]
J. L. Ganley and L. S. Heath, The pagenumber of k-trees is O(k), Discrete Appl. Math., 109 (2001), pp. 215--221.
[20]
T. Hasunuma and Y. Shibata, Embedding De Bruijn, Kautz and shuffle-exchange networks in books, Discrete Appl. Math., 78 (1997), pp. 103--116.
[21]
L. S. Heath and S. Istrail, The pagenumber of genus $g$ graphs is ${O(g)}$, J. ACM, 39 (1992), pp. 479--501.
[22]
L. S. Heath, F. T. Leighton, and A. L. Rosenberg, Comparing queues and stacks as mechanisms for laying out graphs, SIAM J. Discrete Math., 5 (1992), pp. 398--412.
[23]
L. S. Heath, S. V. Pemmaraju, and A. N. Trenk, Stack and queue layouts of directed acyclic graphs: Part I, SIAM J. Comput., 28 (1999), pp. 1510--1539.
[24]
L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of posets, SIAM J. Discrete Math., 10 (1997), pp. 599--625.
[25]
L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of directed acyclic graphs: Part II, SIAM J. Comput., 28 (1999), pp. 1588--1626.
[26]
L. S. Heath and A. L. Rosenberg, Laying out graphs using queues, SIAM J. Comput., 21 (1992), pp. 927--958.
[27]
L. S. Heath, Embedding planar graphs in seven pages, in Proceedings of Foundations of Computer Science (FOCS '84), IEEE, 1984, pp. 74--83.
[28]
P. C. Kainen, Thickness and coarseness of graphs, Abh. Math. Sem. Univ. Hamburg, 39 (1973), pp. 88--95.
[29]
S. M. Malitz, Genus $g$ graphs have pagenumber ${O}(\sqrt g)$, J. Algorithms, 17 (1994), pp. 85--109.
[30]
S. M. Malitz, Graphs with $e$ edges have pagenumber ${O}(\sqrt e)$, J. Algorithms, 17 (1994), pp. 71--84.
[31]
L. T. Ollmann, On the book thicknesses of various graphs, in Southeastern Conference on Combinatorics, Graph Theory and Computing, F. Hoffman, R. B. Levow, and R. S. D. Thomas, eds., Congr. Numer. 8, 1973.
[32]
S. V. Pemmaraju, Exploring the Powers of Stacks and Queues via Graph Layouts, Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1992.
[33]
V. R. Pratt, Computing permutations with double-ended queues, parallel stacks and parallel queues, in Proceedings of Symposium on Theory of Computing (STOC '73), 1973, pp. 268--277.
[34]
S. Rengarajan and C. E. Veni Madhavan, Stack and queue number of 2-trees, in Conference on Computing and Combinatorics (COCOON '95), D. Z. Du and M. Li, eds., Lecture Notes in Comput. Sci. 959, Springer, NY, 1995, pp. 203--212.
[35]
F. Shahrokhi and W. Shi, On crossing sets, disjoint sets, and pagenumber, J. Algorithms, 34 (2000), pp. 40--53.
[36]
R. E. Tarjan, Sorting using networks of queues and stacks, J. ACM, 19 (1972), pp. 341--346.
[37]
M. Yannakakis, Embedding planar graphs in four pages, J. Comput. System Sci., 38 (1989), pp. 36--67.

Cited By

View all
  • (2023)Linear Layouts of Bipartite Planar GraphsAlgorithms and Data Structures10.1007/978-3-031-38906-1_29(444-459)Online publication date: 31-Jul-2023
  • (2022)Code generation criteria for buffered exposed datapath architectures from dataflow graphsProceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems10.1145/3519941.3535076(133-145)Online publication date: 14-Jun-2022
  • (2022)On mixed linear layouts of series-parallel graphsTheoretical Computer Science10.1016/j.tcs.2022.09.019936:C(129-138)Online publication date: 10-Nov-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 42, Issue 6
Special Section on the Fiftieth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009)
2013
463 pages
ISSN:0097-5397
DOI:10.1137/smjcat.42.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2013

Author Tags

  1. graph layout
  2. queue number
  3. planar graph

Author Tags

  1. 05C10
  2. 68R10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Linear Layouts of Bipartite Planar GraphsAlgorithms and Data Structures10.1007/978-3-031-38906-1_29(444-459)Online publication date: 31-Jul-2023
  • (2022)Code generation criteria for buffered exposed datapath architectures from dataflow graphsProceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems10.1145/3519941.3535076(133-145)Online publication date: 14-Jun-2022
  • (2022)On mixed linear layouts of series-parallel graphsTheoretical Computer Science10.1016/j.tcs.2022.09.019936:C(129-138)Online publication date: 10-Nov-2022
  • (2022)Stack-Number is Not Bounded by Queue-NumberCombinatorica10.1007/s00493-021-4585-742:2(151-164)Online publication date: 1-Apr-2022
  • (2022)Lazy Queue Layouts of PosetsAlgorithmica10.1007/s00453-022-01067-y85:5(1176-1201)Online publication date: 28-Nov-2022
  • (2022)An Improved Upper Bound on the Queue Number of Planar GraphsAlgorithmica10.1007/s00453-022-01037-485:2(544-562)Online publication date: 28-Sep-2022
  • (2022)The Rique-Number of GraphsGraph Drawing and Network Visualization10.1007/978-3-031-22203-0_27(371-386)Online publication date: 13-Sep-2022
  • (2018)Queue Layouts of Planar 3-TreesGraph Drawing and Network Visualization10.1007/978-3-030-04414-5_15(213-226)Online publication date: 26-Sep-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media