Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width

Published: 01 January 2014 Publication History

Abstract

We obtain asymptotically tight algorithmic bounds for Max-Cut and Edge Dominating Set problems on graphs of bounded clique-width. We show that on an $n$-vertex graph of clique-width $t$ both problems (1) cannot be solved in time $f(t)n^{o(t)}$ for any function $f$ of $t$ unless exponential time hypothesis fails, and (2) can be solved in time $n^{O(t)}$.

References

[1]
H. Bodlaender, D. Lokshtanov, and E. Penninkx, Planar capacitated dominating set is $W[1]$-hard, in Proceedings of IWPEC'09, Lecture Notes in Comput. Sci. 5917, Springer, New York, 2009, pp. 50--60.
[2]
J. Chen, X. Huang, I. A. Kanj, and G. Xia, On the computational hardness based on linear FPT-reductions, J. Combin. Optim., 11 (2006), pp. 231--247.
[3]
J. Chen, X. Huang, I. A. Kanj, and G. Xia, Strong computational lower bounds via parameterized complexity, J. Comput. System Sci., 72 (2006), pp. 1346--1367.
[4]
D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, and U. Rotics, Polynomial time recognition of clique-width $\le 3$ graphs (extended abstract), in Proceedings of LATIN'00, Lecture Notes in Comput. Sci. 1776, Springer, New York, 2000, pp. 126--134.
[5]
B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp. 125--150.
[6]
B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl. Math., 101 (2000), pp. 77--114.
[7]
M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger, Capacitated domination and covering: A parameterized perspective, in Proceedings of IWPEC'08, Lecture Notes in Comput. Sci. 5018, Springer, New York, 2008, pp. 78--90.
[8]
R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto, and F. A. Rosamond, Cutting up is hard to do: The parameterized complexity of k-cut and related problems, Electron. Notes Theor. Comput. Sci., 78 (2003), pp. 209--222.
[9]
R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts Comput. Sci., Springer, New York, 2013.
[10]
W. Espelage, F. Gurski, and E. Wanke, How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time, in Proceedings of WG'01, Lecture Notes in Comput. Sci. 2204, Springer, New York, 2001, pp. 117--128.
[11]
M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theoret. Comput. Sci., 410 (2009), pp. 53--61.
[12]
M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider, Clique-width is NP-complete, SIAM J. Discrete Math., 23 (2009), pp. 909--939.
[13]
J. Flum and M. Grohe, Parameterized Complexity Theory, Texts Theoret. Comput. Sci. EATCS Ser., Springer, New York, 2006.
[14]
F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh, Algorithmic lower bounds for problems parameterized by clique-width, in Proceedings of SODA, 2010, pp. 493--502.
[15]
F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh, Intractability of clique-width parameterizations, SIAM J. Comput., 39 (2010), pp. 1941--1956.
[16]
M. U. Gerber and D. Kobler, Algorithms for vertex-partitioning problems on graphs with fixed clique-width, Theoret. Comput. Sci., 299 (2003), pp. 719--734.
[17]
O. Giménez, P. Hlinený, and M. Noy, Computing the tutte polynomial on graphs of bounded clique-width, SIAM J. Discret. Math., 20 (2006), pp. 932--946.
[18]
B. Godlin, T. Kotek, and J. A. Makowsky, Evaluations of graph polynomials, in Proceedings of WG, Lecture Notes in Comput. Sci. 5344, Springer, New York, 2008, pp. 183--194.
[19]
P. Hlinený and S. il Oum, Finding branch-decompositions and rank-decompositions, SIAM J. Comput., 38 (2008), pp. 1012--1032.
[20]
P. Hlinený, S.-il Oum, D. Seese, and G. Gottlob, Width parameters beyond tree-width and their applications, Comput. J., 51 (2008), pp. 326--362.
[21]
R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. System Sci., 63 (2001), pp. 512--530.
[22]
K. Jansen, S. Kratsch, D. Marx, and I. Schlotter, Bin packing with fixed number of bins revisited, in Proceedings of SWAT, Lecture Notes in Comput. Sci. 6139, Springer, New York, 2010, pp. 260--272.
[23]
M. Kaminski, V. V. Lozin, and M. Milanic, Recent developments on graphs of bounded clique-width, Discrete Appl. Math., 157 (2009), pp. 2747--2761.
[24]
D. Kobler and U. Rotics, Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract), in Proceedings of SODA'01, ACM-SIAM, 2001, pp. 468--476.
[25]
D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed clique-width, Discrete Appl. Math., 126 (2003), pp. 197--221.
[26]
D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the exponential time hypothesis, Bull. EATCS, 105 (2011), pp. 41--72.
[27]
J. A. Makowsky, U. Rotics, I. Averbouch, and B. Godlin, Computing graph polynomials on graphs of bounded clique-width, in Proceedings of WG'06, Lecture Notes in Comput. Sci., Springer, New York, 2006, pp. 191--204.
[28]
D. Marx, On the optimality of planar and geometric approximation schemes, in Proceedings of FOCS, 2007, pp. 338--348.
[29]
D. Marx, Can you beat treewidth?, Theory Comput., 6 (2010), pp. 85--112.
[30]
S.-il Oum and P. Seymour, Approximating clique-width and branch-width, J. Combin. Theory Ser. B, 96 (2006), pp. 514--528.
[31]
R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Ser. Math. Appl. 31, Oxford University Press, Oxford, 2006.
[32]
M. Rao, MSOL partitioning problems on graphs of bounded treewidth and clique-width, Theoret. Comput. Sci., 377 (2007), pp. 260--267.
[33]
K. Suchan and I. Todinca, On powers of graphs of bounded NLC-width (clique-width), Discrete Appl. Math., 155 (2007), pp. 1885--1893.
[34]
E. Wanke, $k$-NLC graphs and polynomial algorithms, Discrete Appl. Math., 54 (1994), pp. 251--266.

Cited By

View all

Index Terms

  1. Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image SIAM Journal on Computing
      SIAM Journal on Computing  Volume 43, Issue 5
      2014
      371 pages
      ISSN:0097-5397
      DOI:10.1137/smjcat.43.5
      Issue’s Table of Contents

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 01 January 2014

      Author Tags

      1. exponential time hypothesis
      2. clique-width
      3. max-cut
      4. edge dominating set

      Author Tags

      1. 05C85
      2. 68R10
      3. 68Q17
      4. 68Q25
      5. 68W40

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Complexity of Maximum Cut on Interval GraphsDiscrete & Computational Geometry10.1007/s00454-022-00472-y70:2(307-322)Online publication date: 14-Jan-2023
      • (2022)Optimal Centrality Computations Within Bounded Clique-Width GraphsAlgorithmica10.1007/s00453-022-01015-w84:11(3192-3222)Online publication date: 1-Nov-2022
      • (2022)Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-WidthAlgorithmica10.1007/s00453-022-00999-984:11(3489-3520)Online publication date: 1-Nov-2022
      • (2022)On the Minimum Cycle Cover Problem on Graphs with Bounded Co-degeneracyGraph-Theoretic Concepts in Computer Science10.1007/978-3-031-15914-5_14(187-200)Online publication date: 22-Jun-2022
      • (2019)Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width GraphsACM Transactions on Algorithms10.1145/331022815:3(1-57)Online publication date: 7-Jun-2019

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media