Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Use of Supernodes in Factored Sparse Approximate Inverse Preconditioning

Published: 01 January 2015 Publication History

Abstract

In recent years the growing popularity of supercomputers has fostered the development of algorithms able to take advantage of the massive parallelism offered by multiple processors. Direct methods, though robust and computationally efficient, hardly exploit high degrees of parallelism. By contrast, Krylov methods preconditioned by Factored Sparse Approximate Inverses (FSAI) provide, at least in principle, a perfectly parallel approach but are often thwarted by an excessive set-up cost. In this paper we extend the concept of supernode from sparse LU factorizations to approximate inverses, and use it to accelerate the computation of an FSAI-type preconditioner. The numerical experiments on real-world problems show that the overall FSAI efficiency can be significantly increased while preserving its intrinsic parallelism.

References

[1]
F. Alvarado and H. Dağ, Sparsified and incomplete sparse factored inverse preconditioners, in Proceedings of the 1992 Copper Mountain Conference on Iterative Methods, Vol. I (April, 1992).
[2]
C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., 16 (1995), pp. 1404--1411.
[3]
C. Ashcraft and R. G. Grimes, The influence of relaxed supernode partitions on the multifrontal method, ACM Trans. Math. Software, 15 (1989), pp. 291--309.
[4]
S. T. Barnard and M. J. Grote, A block version of the SPAI preconditioner, in Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing 1999 (San Antonio, TX), SIAM, Philadelphia, 1999.
[5]
M. W. Benson, Iterative solution of large scale linear systems, M.Sc. thesis, Lakehead University, Thunder Bay, ON, Canada, 1973.
[6]
M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys., 182 (2002), pp. 418--477.
[7]
M. Benzi and M. T\ruma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math., 30 (1999), pp. 305--340.
[8]
M. Benzi, R. Kouhia, and M. T\r uma, Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6533--6554.
[9]
M. Benzi, C. D. Meyer, and M. T\r uma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135--1149.
[10]
E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1804--1822.
[11]
J. D. F. Cosgrove, J. C. Diaz, and A. Griewank, Approximate inverse preconditioning for sparse linear systems, Int. J. Comput. Math., 44 (1992), pp. 91--110.
[12]
E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceedings of the 1969 24th National Conference (1969), pp. 157--172.
[13]
T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
[14]
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), article 1.
[15]
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program, 91 (2002), pp. 201--213.
[16]
I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, The Clarendon Press, Oxford University Press, New York, 1986.
[17]
I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9 (1983), pp. 302--325.
[18]
M. Ferronato, Preconditioning for sparse linear systems at the dawn of the $21$st century: History, current developments, and future perspectives, ISRN Appl. Math., 2012 (2012), article 127647.
[19]
M. Ferronato, G. Gambolati, C. Janna, and P. Teatini, Geomechanical issues of anthropogenic CO 2 sequestration in exploited gas fields, Energy Conv. Manage., 51 (2010), pp. 1918--1928.
[20]
P. O. Frederickson, Fast approximate inversion of large sparse linear systems, Mathematical Report 7, Lakehead University, Thunder Bay, ON, Canada, 1975.
[21]
N. M. Gould and J. A. Scott, Sparse approximate-inverse preconditioners using norm-minimization techniques, SIAM J. Sci. Comput., 19 (1998), pp. 605--625.
[22]
M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximatei inverses, SIAM J. Sci. Comput., 18 (1997), pp. 838--853.
[23]
A. Gupta and T. George, Adaptive techniques for improving the performance of incomplete factorization preconditioning, SIAM J. Sci. Comput., 32 (2010), pp. 84--110.
[24]
P. Hénon, P. Ramet, and J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Comput., 28 (2002), pp. 301--321.
[25]
P. Hénon, P. Ramet, and J. Roman, On finding approximate supernodes for an efficient block-ILU(k) factorization, Parallel Comput., 34 (2008), pp. 345--362.
[26]
D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor preconditioning, SIAM J. Sci. Comput., 22 (2001), pp. 2194--2215.
[27]
T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning, Appl. Numer. Math., 30 (1999), pp. 291--303.
[28]
T. Huckle, Factorized sparse approximate inverses for preconditioning, J. Supercomput., 25 (2003), pp. 109--117.
[29]
C. Janna, M. Ferronato, and G. Gambolati, A block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems, SIAM J. Sci. Comput., 32 (2010), pp. 2468--2484.
[30]
C. Janna and M. Ferronato, Adaptive pattern research for block FSAI preconditioning, SIAM J. Sci. Comput., 33 (2011), pp. 3357--3380.
[31]
C. Janna, M. Ferronato, and G. Gambolati, Enhanced block FSAI preconditioning using domain decomposition techniques, SIAM J. Sci. Comput., 35 (2013), pp. S229--S249.
[32]
C. Janna, M. Ferronato, and G. Gambolati, Approximate inverse preconditioning for the solution of large sparse linear systems, Computational Technology Reviews, 7 (2013), pp. 25--41.
[33]
C. Janna, N. Castelletto, and M. Ferronato, Efficient coupling of graph partitioning techniques with the adaptive block FSAI parallel preconditioner, Numer. Algorithms, to appear.
[34]
C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, FSAIPACK: A software package for high performance FSAI preconditioning, ACM Trans. Math. Software, 41 (2015), article 10.
[35]
Z. Jia and B. Zhu, A power sparse approximate inverse preconditioning procedure for large sparse linear systems, Numer. Linear Algebra Appl., 16 (2009), pp. 259--299.
[36]
I. E. Kaporin, A preconditioned conjugate gradient method for solving discrete analogs of differential problems, Differ. Equ., 26 (1990), pp. 897--906.
[37]
I. E. Kaporin, New convergence results and preconditioning strategies for the conjugate gradient method, Numer Linear Algebra Appl., 1 (1994), pp. 179--210.
[38]
L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning. I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45--58.
[39]
J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 134--172.
[40]
MUMPS: a MUltifrontal Massively Parallel sparse direct Solver, available online at http://www.siam.org/journals/http://graal.ens-lyon.fr/MUMPS/index.php.
[41]
Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[42]
O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Lecture Notes in Comput. Sci. 2330, Springer, Berlin, 2002.
[43]
N. Vannieuwenhoven and K. Meerbergen, IMF: An incomplete multifrontal LU-factorization for element-structured sparse linear systems, SIAM J. Sci. Comput., 35 (2013), pp. A270--A293.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 37, Issue 1
2015
755 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.37.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2015

Author Tags

  1. preconditioning
  2. approximate inverses
  3. parallel computing
  4. iterative methods

Author Tags

  1. 65F10
  2. 65F35
  3. 65F50
  4. 65Y05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media