Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Approximate Loebl--Komlós--Sós Conjecture III: : The Finer Structure of LKS Graphs

Published: 01 January 2017 Publication History

Abstract

This is the third of a series of four papers in which we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $\alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(\frac12+\alpha)n$ vertices of degree at least $(1+\alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first paper of the series, we gave a decomposition of the graph $G$ into several parts of different characteristics. In the second paper, we found a combinatorial structure inside the decomposition. In this paper, we will give a refinement of this structure. In the fourth paper, the refined structure will be used for embedding the tree $T$.

References

[1]
P. Erdös, Z. Füredi, M. Loebl, and V. T. Sós, Discrepancy of trees, Studia Sci. Math. Hungar., 30 (1995), pp. 47--57.
[2]
J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl--Komlós--Sós Conjecture I: The sparse decomposition, SIAM J. Discrete Math., 31 (2017), pp. 945--982, https://doi.org/10.1137/140982842, https://arxiv.org/abs/1408.3858.
[3]
J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl--Komlós--Sós Conjecture II: The rough structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), pp. 983--1016, https://doi.org/10.1137/140982854, https://arxiv.org/abs/1408.3871.
[4]
J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl--Komlós--Sós Conjecture III: The finer structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), pp. 1017--1071, https://doi.org/10.1137/140982866, https://arxiv.org/abs/1408.3866.
[5]
J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl--Komlós--Sós Conjecture IV: Embedding techniques and the proof of the main result, SIAM J. Discrete Math., 31 (2017), pp. 1072--1148, https://doi.org/10.1137/140982878, https://arxiv.org/abs/1408.3870.
[6]
J. Hladký and D. Piguet, Loebl-Komlós-Sós Conjecture: Dense case, J. Combin. Theory Ser. B, 116 (2016), pp. 123--190.
[7]
J. Hladký, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl--Komlós--Sós conjecture and embedding trees in sparse graphs, Electron. Res. Announc. Math. Sci., 22, 2015, pp. 1--11.
[8]
D. Piguet and M. J. Stein, An approximate version of the Loebl-Komlós-Sós conjecture, J. Combin. Theory Ser. B, 102 (2012), pp. 102--125.

Index Terms

  1. The Approximate Loebl--Komlós--Sós Conjecture III: The Finer Structure of LKS Graphs
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Discrete Mathematics
        SIAM Journal on Discrete Mathematics  Volume 31, Issue 2
        DOI:10.1137/sjdmec.31.2
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2017

        Author Tags

        1. extremal graph theory
        2. Loebl--Komlós--Sós conjecture
        3. tree embedding
        4. regularity lemma
        5. sparse graph
        6. graph decomposition

        Author Tags

        1. Primary
        2. 05C35; Secondary
        3. 05C05

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 11 Feb 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media