Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates

Published: 01 January 2015 Publication History

Abstract

This work presents a nonlinear model reduction approach for systems of equations stemming from the discretization of partial differential equations with nonlinear terms. Our approach constructs a reduced system with proper orthogonal decomposition and the discrete empirical interpolation method (DEIM); however, whereas classical DEIM derives a linear approximation of the nonlinear terms in a static DEIM space generated in an offline phase, our method adapts the DEIM space as the online calculation proceeds and thus provides a nonlinear approximation. The online adaptation uses new data to produce a reduced system that accurately approximates behavior not anticipated in the offline phase. These online data are obtained by querying the full-order system during the online phase, but only at a few selected components to guarantee a computationally efficient adaptation. Compared to the classical static approach, our online adaptive and nonlinear model reduction approach achieves accuracy improvements of up to three orders of magnitude in our numerical experiments with time-dependent and steady-state nonlinear problems. The examples also demonstrate that through adaptivity, our reduced systems provide valid approximations of the full-order systems outside of the parameter domains for which they were initially built in the offline phase.

References

[1]
D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput., 33 (2011), pp. 2169--2198.
[2]
D. Amsallem, M. Zahr, and C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engrg., 92 (2012), pp. 891--916.
[3]
P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control, 53 (2008), pp. 2237--2251.
[4]
M. Barrault, Y. Maday, N.-C. Nguyen, and A. Patera, An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), pp. 667--672.
[5]
A. Basudhar and S. Missoum, An improved adaptive sampling scheme for the construction of explicit boundaries, Struct. Multidiscip. Optim., 42 (2010), pp. 517--529.
[6]
B. Bichon, M. Eldred, L. Swiler, S. Mahadevan, and J. McFarland, Efficient global reliability analysis for nonlinear implicit performance functions, AIAA J., 46 (2008), pp. 2459--2468.
[7]
M. Buffoni and K. Willcox, Projection-based model reduction for reacting flows, in Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, AIAA paper 2010-5008, 2010.
[8]
T. Bui-Thanh, K. Willcox, and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput., 30 (2008), pp. 3270--3288.
[9]
K. Carlberg, Adaptive h-refinement for reduced-order models, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1192--1210.
[10]
K. Carlberg, C. Bou-Mosleh, and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov--Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86 (2011), pp. 155--181.
[11]
S. Chaturantabut, Nonlinear Model Reduction via Discrete Empirical Interpolation, Ph.D. thesis, Computational and Applied Mathematics, Rice University, Houston, 2011.
[12]
S. Chaturantabut and D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), pp. 2737--2764.
[13]
P. Chen and A. Quarteroni, Accurate and efficient evaluation of failure probability for partial different equations with random input data, Comput. Methods Appl. Mech. Engrg., 267 (2013), pp. 233--260.
[14]
P. Chen, A. Quarteroni, and G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 51 (2013), pp. 3163--3185.
[15]
P. Chen, A. Quarteroni, and G. Rozza, A weighted empirical interpolation method: A priori convergence analysis and applications, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 943--953.
[16]
D. Ryckelynck, A priori hyperreduction method: An adaptive approach, J. Comput. Phys., 202 (2005), pp. 346--366.
[17]
J. Degroote, J. Vierendeels, and K. Willcox, Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis, Internat. J. Numer. Methods Fluids, 63 (2010), pp. 207--230.
[18]
M. Dihlmann, M. Drohmann, and B. Haasdonk, Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-partitioning, in Proceedings of the International Conference on Adaptive Modeling and Simulation, D. Aubry, P. Díez, B. Tie, and N. Parés, eds., 2011, pp. 156--167.
[19]
J. Eftang and A. Patera, Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation, Internat. J. Numer. Methods Engrg., 96 (2013), pp. 269--302.
[20]
J. Eftang and B. Stamm, Parameter multi-domain hp empirical interpolation, Internat. J. Numer. Methods Engrg., 90 (2012), pp. 412--428.
[21]
P. Feldmann and R. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Computer-Aided Design Integrated Circuits Syst., 14 (1995), pp. 639--649.
[22]
S. Friedland and A. Torokhti, Generalized rank-constrained matrix approximations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 656--659.
[23]
K. Gallivan, E. Grimme, and P. Van Dooren, Padé approximation of large-scale dynamic systems with Lanczos methods, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994.
[24]
G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 2013.
[25]
B. Haasdonk, Convergence rates of the POD-Greedy method, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 859--873.
[26]
B. Haasdonk and M. Ohlberger, Adaptive basis enrichment for the reduced basis method applied to finite volume schemes, in Proceedings of the Fifth International Symposium on Finite Volumes for Complex Applications, R. Eymard and J.-M. Hérard, eds., 2008, pp. 471--479.
[27]
S. Kaulmann and B. Haasdonk, Online greedy reduced basis construction using dictionaries, in Proceedings of the Sixth International Conference on Adaptive Modeling and Simulation (ADMOS 2013), J. P. Moitinho de Almeida, P. Díez, C. Tiago, and N. Parés, eds., 2013, pp. 365--376.
[28]
J. Lagarias, J. Reeds, M. Wright, and P. Wright, Convergence properties of the Nelder--Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), pp. 112--147.
[29]
O. Lass, Reduced Order Modeling and Parameter Identification for Coupled Nonlinear PDE Systems, Ph.D. thesis, University of Konstanz, Konstanz, Germany, 2014.
[30]
J. Li and D. Xiu, Evaluation of failure probability via surrogate models, J. Comput. Phys., 229 (2010), pp. 8966--8980.
[31]
Y. Maday and B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput., 35 (2013), pp. A2417--A2441.
[32]
R. Markovinović and J. Jansen, Accelerating iterative solution methods using reduced-order models as solution predictors, Internat. J. Numer. Methods Engrg., 68 (2006), pp. 525--541.
[33]
B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17--32.
[34]
H. Panzer, J. Mohring, R. Eid, and B. Lohmann, Parametric model order reduction by matrix interpolation, Automatisierungstechnik, 58 (2010), pp. 475--484.
[35]
A. Paul-Dubois-Taine and D. Amsallem, An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1262--1292.
[36]
B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz, Localized discrete empirical interpolation method, SIAM J. Sci. Comput., 36 (2014), pp. A168--A192.
[37]
B. Peherstorfer, S. Zimmer, and H.-J. Bungartz, Model reduction with the reduced basis method and sparse grids, in Sparse Grids and Applications, J. Garcke and M. Griebel, eds., Lect. Notes Comput. Sci. Eng. 88, Springer, New York, 2013, pp. 223--242.
[38]
L. Peng and K. Mohseni, An online manifold learning approach for model reduction of dynamical systems, SIAM J. Numer. Anal., 52 (2014), pp. 1928--1952.
[39]
M.-L. Rapùn and J. Vega, Reduced order models based on local POD plus Galerkin projection, J. Comput. Phys., 229 (2010), pp. 3046--3063.
[40]
G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15 (2007), pp. 1--47.
[41]
L. Sirovich, Turbulence and the dynamics of coherent structures, Quart. Appl. Math., 1987, pp. 561--571.
[42]
K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier--Stokes equations: Rigorous reduced-basis a posteriori error bounds, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 773--788.
[43]
K. Washabaugh, D. Amsallem, M. Zahr, and C. Farhat, Nonlinear model reduction for CFD problems using local reduced-order bases, in Proceedings of the 42nd Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, AIAA paper 2012-2686, 2012.
[44]
G. Weickum, M. Eldred, and K. Maute, A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization, Struct. Multidiscip. Optim., 38 (2009), pp. 599--611.
[45]
M. Zahr and C. Farhat, Progressive construction of a parametric reduced-order model for pde-constrained optimization, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1111--1135.
[46]
R. Zimmermann, A locally parametrized reduced-order model for the linear frequency domain approach to time-accurate computational fluid dynamics, SIAM J. Sci. Comput., 36 (2014), pp. B508--B537.

Cited By

View all
  • (2024)A non-overlapping optimization-based domain decomposition approach to component-based model reduction of incompressible flowsJournal of Computational Physics10.1016/j.jcp.2024.113038509:COnline publication date: 15-Jul-2024
  • (2024)Neural Galerkin schemes with active learning for high-dimensional evolution equationsJournal of Computational Physics10.1016/j.jcp.2023.112588496:COnline publication date: 27-Feb-2024
  • (2024)An adaptive certified space-time reduced basis method for nonsmooth parabolic partial differential equationsAdvances in Computational Mathematics10.1007/s10444-024-10137-450:3Online publication date: 15-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 37, Issue 4
DOI:10.1137/sjoce3.37.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2015

Author Tags

  1. adaptive model reduction
  2. nonlinear systems
  3. empirical interpolation
  4. proper orthogonal decomposition

Author Tags

  1. 65M22
  2. 65N22

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A non-overlapping optimization-based domain decomposition approach to component-based model reduction of incompressible flowsJournal of Computational Physics10.1016/j.jcp.2024.113038509:COnline publication date: 15-Jul-2024
  • (2024)Neural Galerkin schemes with active learning for high-dimensional evolution equationsJournal of Computational Physics10.1016/j.jcp.2023.112588496:COnline publication date: 27-Feb-2024
  • (2024)An adaptive certified space-time reduced basis method for nonsmooth parabolic partial differential equationsAdvances in Computational Mathematics10.1007/s10444-024-10137-450:3Online publication date: 15-May-2024
  • (2024)Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systemsAdvances in Computational Mathematics10.1007/s10444-023-10102-750:1Online publication date: 5-Feb-2024
  • (2024)Enhancing dynamic mode decomposition workflow with in situ visualization and data compressionEngineering with Computers10.1007/s00366-023-01805-y40:1(455-476)Online publication date: 1-Feb-2024
  • (2023)Randomized sparse neural galerkin schemes for solving evolution equations with deep networksProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666301(4097-4114)Online publication date: 10-Dec-2023
  • (2023)Predictive reduced order modeling of chaotic multi-scale problems using adaptively sampled projectionsJournal of Computational Physics10.1016/j.jcp.2023.112356491:COnline publication date: 15-Oct-2023
  • (2023)Local Lagrangian reduced-order modeling for the Rayleigh-Taylor instability by solution manifold decompositionJournal of Computational Physics10.1016/j.jcp.2022.111655472:COnline publication date: 1-Jan-2023
  • (2023)Front Transport Reduction for Complex Moving FrontsJournal of Scientific Computing10.1007/s10915-023-02210-996:1Online publication date: 3-Jun-2023
  • (2022)A reduced order modeling method based on GNAT-embedded hybrid snapshot simulationMathematics and Computers in Simulation10.1016/j.matcom.2022.03.006199:C(100-132)Online publication date: 1-Sep-2022

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media