Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Complexity Classification of Local Hamiltonian Problems

Published: 01 January 2016 Publication History

Abstract

The calculation of ground-state energies of physical systems can be formalized as the $k$-local Hamiltonian problem, which is a natural quantum analogue of classical constraint satisfaction problems. One way of making the problem more physically meaningful is to restrict the Hamiltonian in question by picking its terms from a fixed set $\mathcal{S}$ and scaling them by arbitrary weights. Examples of such special cases are the Heisenberg and Ising models from condensed-matter physics. In this work we characterize the complexity of this problem for all 2-local qubit Hamiltonians. Depending on the subset $\mathcal{S}$, the problem falls into one of the following categories: in $\mathsf{ P}$; $\mathsf{NP}$-complete; polynomial-time equivalent to the Ising model with transverse magnetic fields; or $\mathsf{QMA}$-complete. The third of these classes has been shown to be $\mathsf{StoqMA}$-complete by Bravyi and Hastings. The characterization holds even if $\mathcal{S}$ does not contain any 1-local terms; for example, we prove for the first time $\mathsf{QMA}$-completeness of the Heisenberg and XY interactions in this setting. If $\mathcal{S}$ is assumed to contain all 1-local terms, which is the setting considered by previous work, we have a characterization that goes beyond 2-local interactions: for any constant $k$, all $k$-local qubit Hamiltonians whose terms are picked from a fixed set $\mathcal{S}$ correspond to problems either in $\mathsf{P}$; polynomial-time equivalent to the Ising model with transverse magnetic fields; or $\mathsf{QMA}$-complete. These results are a quantum analogue of the maximization variant of Schaefer's dichotomy theorem for Boolean constraint satisfaction problems.

References

[1]
D. Aharonov and L. Eldar, On the complexity of commuting local Hamiltonians, and tight conditions for topological order in such systems, in Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer Science, Washington, DC, 2011, pp. 334--343. Preprint available online at http://arxiv.org/abs/1102.0770 arXiv:1102.0770.
[2]
L. Ballentine, Quantum Mechanics: a Modern Development, World Scientific, Singapore, 1998.
[3]
F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. A, 15 (1982), pp. 3241--3253.
[4]
C. Bennett, J. Cirac, M. Leifer, D. Leung, N. Linden, S. Popescu, and G. Vidal, Optimal simulation of two-qubit Hamiltonians using general local operations, Phys. Rev. A, (2002), 012305. Preprint available online at http://arxiv.org/abs/quant-ph/0107035 arXiv:0107035.
[5]
J. Biamonte, Non-perturbative k-body to two-body commuting conversion Hamiltonians and embedding problem instances into Ising spins, Phys. Rev. A, 77 (2008), 052331. Preprint available online at http://arxiv.org/abs/0801.3800 arXiv:0801.3800.
[6]
J. Biamonte and P. Love, Realizable Hamiltonians for universal adiabatic quantum computers, Phys. Rev. A, 78 (2008), 012352. Preprint available online at at http://arxiv.org/abs/0704.1287 arXiv:0704.1287.
[7]
A. Bookatz, QMA-complete problems, Quantum Inf. Comput., 14 (2014), pp. 361--383. Preprint available online at http://arxiv.org/abs/1212.6312 arXiv:1212.6312.
[8]
S. Bravyi, Efficient algorithm for a quantum analogue of 2-SAT, in Cross Disciplinary Advances in Quantum Computing, Contemp. Math 536, Amer. Math. Soc. Providence, RI, 2011, pp. 33--48. Preprint available online at http://arxiv.org/abs/quant-ph/0602108 arXiv:0602108.
[9]
S. Bravyi, Monte Carlo Simulation of Stoquastic Hamiltonians, preprint, 2014. http://arxiv.org/abs/1402.2295 arXiv:1402.2295.
[10]
S. Bravyi, A. Bessen, and B. Terhal, Merlin-Arthur Games and Stoquastic Complexity, preprint, 2006. http://arxiv.org/abs/quant-ph/0611021 arXiv:0611021.
[11]
S. Bravyi, D. DiVincenzo, D. Loss, and B. Terhal, Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions, Phys. Rev. Lett., 101 (2008), 070503. Preprint available online at http://arxiv.org/abs/0803.2686 arXiv:0803.2686.
[12]
S. Bravyi, D. DiVincenzo, R. Oliveira, and B. Terhal, The complexity of stoquastic local Hamiltonian problems, Quantum Inf. Comput., 8 (2008), pp. 361--385. Preprint available online at http://arxiv.org/abs/quant-ph/0606140 arXiv:0606140.
[13]
S. Bravyi and M. Hastings, On Complexity of the Quantum Ising Model, preprint, 2014. http://arxiv.org/abs/1410.0703 arXiv:1410.0703.
[14]
S. Bravyi and M. Vyalyi, Commutative version of the k-local Hamiltonian problem and common eigenspace problem, Quantum Inf. Comput., 5 (2005), pp. 187--215. Preprint available online at http://arxiv.org/abs/quant-ph/0308021 arXiv:0308021.
[15]
M. Bremner, R. Jozsa, and D. Shepherd, Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy, Proc. Roy. Soc. Ser. A, 467 (2011), pp. 459--472. Preprint available online at http://arxiv.org/abs/1005.1407 arXiv:1005.1407.
[16]
A. Bulatov, A dichotomy theorem for constraints on a three-element set, in Proceedings of the IEEE 43rd Annual Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 2002, pp. 649--658.
[17]
Y. Cao and D. Nagaj, Perturbative Gadgets without Strong Interactions, preprint, 2014. http://arxiv.org/abs/1408.5881 arXiv:1408.5881.
[18]
A. Childs, D. Gosset, and Z. Webb, The Bose-Hubbard model is QMA-complete, in Proceedings of the 41st International Conference on Automata, Languages and Programming (ICALP'14), Lecture Notes in Comput. Sci. 8572, Springer, Berlin, 2014, pp. 308--319. Preprint available online at http://arxiv.org/abs/1311.3297 arXiv:1311.3297.
[19]
A. Childs, D. Gosset, and Z. Webb, Complexity of the XY Antiferromagnet at Fixed Magnetization, preprint, 2015. http://arxiv.org/abs/1503.07083 arXiv:1503.07083.
[20]
A. Childs, D. Leung, L. Mančinska, and M. Ozols, Characterization of universal two-qubit Hamiltonians, Quantum Inf. Comput., 11 (2011), pp. 19--39. Preprint available online at http://arxiv.org/abs/1004.1645 arXiv:1004.1645.
[21]
N. Creignou, A dichotomy theorem for maximum generalized satisfiability problems, J. Comput. Syst. Sci., 51 (1995), pp. 511--522.
[22]
N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint Satisfaction Problems, Discrete Math. Appl. 7, SIAM, Philadelphia, 2001.
[23]
G. de las Cuevas and T. Cubitt, Simple Universal Models Capture all Spin Physics, preprint, 2014. http://arxiv.org/abs/1406.5955 arXiv:1406.5955.
[24]
D. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Universal quantum computation with the exchange interaction, Nature, 408 (2000), pp. 339--342. Preprint available online at http://arxiv.org/abs/quant-ph/0005116 arXiv:0005116.
[25]
W. Dür, G. Vidal, J. Cirac, N. Linden, and S. Popescu, Entanglement capabilities of non-local Hamiltonians, Phys. Rev. Lett., 87 (2001), 137901. Preprint available online at http://arxiv.org/abs/quant-ph/0006034 arXiv:0006034.
[26]
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum Computation by Adiabatic Evolution, Tech. report MIT-CTP-2936, MIT, Cambridge, MA, 2000. Preprint available online at http://arxiv.org/abs/quant-ph/0001106 arXiv:0001106.
[27]
D. Gosset and D. Nagaj, Quantum 3-SAT is QMA$_1$-complete, in Proceedings of the IEEE 54th Annual Symposium Foundations of Computer Science, Berkeley, CA, 2013, pp. 756--765. Preprint available online at http://arxiv.org/abs/1302.0290 arXiv:1302.0290.
[28]
F. Haldane, Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-$1/2$ antiferromagnetic Heisenberg chain with $1/r^2$ exchange, Phys. Rev. Lett., 60 (1988), pp. 635--638.
[29]
K. Hannabuss, An Introduction to Quantum Theory, Oxford University Press, Oxford, UK, 1997.
[30]
M. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett., 107 (2011), 210501.
[31]
R. Horodecki and M. Horodecki, Information-theoretic aspects of inseparability of mixed states, Phys. Rev. A., 54 (1996), pp. 1838--1843. Preprint available online at http://arxiv.org/abs/quant-ph/9607007 arXiv:9607007.
[32]
M. Hsieh, J. Kempe, S. Myrgren, and K. B. Whaley, An explicit universal gate-set for exchange-only quantum computation, Quantum Information Processing, 2 (2003), pp. 289--307. Preprint available online at http://arxiv.org/abs/quant-ph/0309002 arXiv:0309002.
[33]
M. Johnson, M. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. Berkley, J. Johansson, P. Bunyk, E. Chapple, C. Enderud, J. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. Thom, E. Tolkacheva, C. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose, Quantum annealing with manufactured spins, Nature, 473 (2011), pp. 194--198.
[34]
P. Jonsson, Boolean constraint satisfaction: Complexity results for optimization problems with arbitrary weights, Theoret. Comput. Sci., 244 (2000), pp. 189--203.
[35]
S. Jordan, D. Gosset, and P. Love, Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and Markov matrices, Phys. Rev. A., 81 (2010), 032331. Preprint available online at http://arxiv.org/abs/0905.4755 arXiv:0905.4755.
[36]
J. Kempe, D. Bacon, D. DiVincenzo, and K. Whaley, Encoded universality from a single physical interaction, Quantum Inf. Comput., 1 (2001), pp. 33--55. Preprint available online at http://arxiv.org/abs/quant-ph/0112013 arXiv:0112013.
[37]
J. Kempe, D. Bacon, D. Lidar, and K. B. Whaley, Theory of decoherence-free fault-tolerant universal quantum computation, Phys. Rev. A., 63 (2000), 042307. Preprint available online at http://arxiv.org/abs/quant-ph/0004064 arXiv:0004064.
[38]
J. Kempe, A. Kitaev, and O. Regev, The complexity of the local Hamiltonian problem, SIAM J. Comput., 35 (2006), pp. 1070--1097. Preprint available online at http://arxiv.org/abs/quant-ph/0406180 arXiv:0406180.
[39]
J. Kempe and K. B. Whaley, Exact gate-sequences for universal quantum computation using the XY-interaction alone, Phys. Rev. A., 65 (2002), 052330. Preprint available online at http://arxiv.org/abs/quant-ph/0112014 arXiv:0112014.
[40]
S. Khanna, M. Sudan, and D. Williamson, A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction, in Proceedings of 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 11--20.
[41]
A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, Grad. Stud. Math. 47, Amer. Math. Soc., Providence, RI, 2002.
[42]
D. Klein, Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions, J. Phys. A, 15 (1982), pp. 661--671.
[43]
V. Korepin and O. Patu, XXX Spin Chain: From Bethe Solution to Open Problems, preprint, 2007. http://arxiv.org/abs/cond-mat/0701491 arXiv:0701491.
[44]
R. Ladner, On the structure of polynomial time reducibility, J. ACM, 22 (1975), pp. 155--171.
[45]
E. Lieb and D. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys., 3 (1962), pp. 749--751.
[46]
Y.-K. Liu, M. Christandl, and F. Verstraete, Quantum computational complexity of the N-representability problem: QMA complete, Phys. Rev. Lett., 98 (2007), 110503. Preprint available online at http://arxiv.org/abs/quant-ph/0609125 arXiv:0609125.
[47]
C. Majumdar and D. Ghosh, On next-nearest-neighbor interaction in linear chain. I, J. Math. Phys., 10 (1969), pp. 1388--1398.
[48]
R. Oliveira and B. Terhal, The complexity of quantum spin systems on a two-dimensional square lattice, Quantum Inf. Comput., 8 (2008), pp. 900--924. Preprint available online at http://arxiv.org/abs/quant-ph/0504050 arXiv:0504050.
[49]
S. Piddock and A. Montanaro, The Complexity of Antiferromagnetic Interactions and $2$D Lattices, preprint, 2015. http://arxiv.org/abs/1506.04014 arXiv:1506.04014.
[50]
J. Richter and A. Voigt, The spin-$1/2$ Heisenberg star with frustration: Numerical versus exact results, J. Phys. A, 27 (1994), pp. 1139--1149.
[51]
J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Addison-Wesley, New York, 2011.
[52]
T. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual ACM Symposium on Theory of Computing, San Diego, CA, 1978, pp. 216--226.
[53]
N. Schuch, Complexity of commuting Hamiltonians on a square lattice of qubits, Quantum Inf. Comput., 11 (2011), pp. 901--912. Preprint available online at http://arxiv.org/abs/1105.2843 arXiv:1105.2843.
[54]
N. Schuch and F. Verstraete, Computational complexity of interacting electrons and fundamental limitations of density functional theory, Nature Physics, 5 (2009), pp. 732--735. Preprint available online at http://arxiv.org/abs/0712.0483 arXiv:0712.0483.
[55]
B. S. Shastry, Exact solution of an $S=1/2$ Heisenberg antiferromagnetic chain with long-ranged interactions, Phys. Rev. Lett., 60 (1988), pp. 639--642.
[56]
G. Thompson, Normal forms for skew-symmetric matrices and Hamiltonian systems with first integrals linear in momenta, Proc. Amer. Math. Soc., 104 (1988), pp. 910--916.
[57]
J. Vidal, S. Dusuel, and T. Barthel, Entanglement entropy in collective models, J. Stat. Mech. Theory Exp., 2007 (2007), P01015. Preprint available online at http://arxiv.org/abs/cond-mat/0610833 arXiv:0610833.
[58]
J. Watrous, Quantum computational complexity, in Encyclopedia of Complexity and Systems Science, Springer, New York, 2009, pp. 7174--7201. Preprint available online at http://arxiv.org/abs/0804.3401 arXiv:0804.3401.
[59]
T.-C. Wei, M. Mosca, and A. Nayak, Interacting boson problems can be QMA hard, Phys. Rev. Lett., 104 (2010), 040501. Preprint available online at http://arxiv.org/abs/0905.3413 arXiv:0905.3413.
[60]
J. v. Wezel, J. v. d. Brink, and J. Zaanen, An intrinsic limit to quantum coherence due to spontaneous symmetry breaking, Phys. Rev. Lett., 94 (2005), 230401.
[61]
J. Yan and D. Bacon, The $k$-Local Pauli Commuting Hamiltonians Problem Is in P, preprint, 2012. http://arxiv.org/abs/1203.3906 arXiv:1203.3906.

Cited By

View all
  • (2024)Guest Column: The 7 faces of quantum NPACM SIGACT News10.1145/3639528.363953554:4(54-91)Online publication date: 3-Jan-2024
  • (2022)Hamiltonian complexity in the thermodynamic limitProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520067(750-763)Online publication date: 9-Jun-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 45, Issue 2
DOI:10.1137/smjcat.45.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. quantum complexity
  2. quantum computation
  3. constraint satisfaction problems
  4. local Hamiltonian problem

Author Tags

  1. 68Q12
  2. 68Q17
  3. 81P68

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Guest Column: The 7 faces of quantum NPACM SIGACT News10.1145/3639528.363953554:4(54-91)Online publication date: 3-Jan-2024
  • (2022)Hamiltonian complexity in the thermodynamic limitProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520067(750-763)Online publication date: 9-Jun-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media