Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Error Estimates for the Euler Discretization of an Optimal Control Problem with First-Order State Constraints

Published: 01 January 2017 Publication History

Abstract

We propose some error estimates for the discrete solution of an optimal control problem with first-order state constraints, where the trajectories are approximated with a classical Euler scheme. We obtain order 1 approximation results in the $L^\infty$ norm (as opposed to the order 2/3 results obtained in the literature). We assume either a strong second-order optimality condition or a weaker formulation in the case where the state constraint is scalar and satisfies some hypotheses for junction points, and where the time step is constant. Our technique is based on some homotopy path of discrete optimal control problems that we study using perturbation analysis of nonlinear programming problems.

References

[1]
J. F. Bonnans, Lipschitz solutions of optimal control problems with state constraints of arbitrary order, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2 (2010), pp. 78--98.
[2]
J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, Springer, Berlin, 2006.
[3]
J. F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control, SIAM J. Control Optim., 46 (2007), pp. 1398--1430.
[4]
J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 825--863.
[5]
J. F. Bonnans and A. Hermant, Revisiting the analysis of optimal control problems with several state constraints, Control Cybernet., 38 (2009), pp. 1021--1052.
[6]
J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 561--598.
[7]
J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Math. Program, 117 (2009), pp. 21--50.
[8]
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer, New York, 2000.
[9]
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Oper. Res., 8.2 (1974), pp. 129--151.
[10]
A. E. Bryson, W. F. Denham, and S. E. Dreyfus, Optimal programming problems with inequality constraints, AIAA J., 1 (1963), pp. 2544--2550.
[11]
B. M. Budak, E. M. Berkovich, and E. N. Solov'eva, Difference approximations in optimal control problems, SIAM J. Control, 7 (1969), pp. 18--31.
[12]
J. Cullum, Finite-dimensional approximations of state-constrained continuous optimal control problems, SIAM J. Control, 10 (1972), pp. 649--670.
[13]
A. L. Dontchev, Discrete approximations in optimal control, in Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, IMA Vols. Math. Appl. 78, Springer, New York, 1996, pp. 59--80.
[14]
A. L. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim., 31 (1993), pp. 569--603.
[15]
A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control, SIAM J. Control Optim., 36 (1998), pp. 698--718.
[16]
A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2001), pp. 173--203.
[17]
W. W. Hager, The Ritz--Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal., 12 (1975), pp. 854--867.
[18]
W. W. Hager, Lipschitz continuity for constrained processes, SIAM J. Control Optim., 17 (1979), pp. 321--338.
[19]
W. W. Hager, Runge--Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 87 (2000), pp. 247--282.
[20]
W. W. Hager and G. D. Ianculescu, Dual approximations in optimal control, SIAM J. Control Optim., 22 (1984), pp. 423--465.
[21]
A. Hermant, Stability analysis of optimal control problems with a second-order state constraint, SIAM J. Optim., 20 (2009), pp. 104--129.
[22]
D. H. Jacobson, M. M. Lele, and J. L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality constraints, J. Math. Anal. Appl., 35 (1971), pp. 255--284.
[23]
K. Jittorntrum, Solution point differentiability without strict complementarity in nonlinear programming, in Sensitivity, Stability and Parametric Analysis, Mathematical Programming Studies 21, Springer, Berlin, 1984, pp. 127--138.
[24]
K. Malanowski and H. Maurer, Sensitivity analysis for state constrained optimal control problems, Discrete Contin. Dyn. Syst., 4 (1998), pp. 241--272.
[25]
H. Maurer, On the minimum principle for optimal control problems with state constraints, Technical report, Schriftenreihe des Rechenzentrum 41, Universität Münster, 1979.
[26]
H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control, in Mathematical Programming at Obewogach, Mathematical Programming Studies 14, Sprniger, Berlin, 1981, pp. 163--177.
[27]
H. Maurer and H. J. Pesch, Solution differentiability for nonlinear parametric control problems, SIAM J. Control Optim., 32 (1994), pp. 1542--1554.
[28]
H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math. Program., 16 (1979), pp. 98--110.
[29]
A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, Providence, RI, 1998.
[30]
B. Sh. Mordukhovich, On difference approximations of optimal control systems, J. Appl. Math. Mech., 42 (1978), pp. 452--461.
[31]
L. W. Neustadt, A general theory of extremals, J. Comput. Syst. Sci. Int., 3 (1969), pp. 57--92.
[32]
S. M. Robinson, First order conditions for general nonlinear optimization, SIAM J. Appl. Math., 30 (1976), pp. 597--607.
[33]
S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43--62.
[34]
A. Schwartz and E. Polak, Consistent approximations for optimal control problems based on Runge--Kutta integration, SIAM J. Control Optim., 34 (1996), pp. 1235--1269.
[35]
R. Vinter, Optimal Control, Birkhäuser, Boston, MA, 2000.
[36]
J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Appl. Math. Optim., 5 (1979), pp. 49--62.

Cited By

View all
  • (2023)Error estimates for Runge–Kutta schemes of optimal control problems with index 1 DAEsComputational Optimization and Applications10.1007/s10589-023-00484-186:3(1299-1325)Online publication date: 1-Dec-2023
  • (2018)On the convergence of the gradient projection method for convex optimal control problems with bang---bang solutionsComputational Optimization and Applications10.1007/s10589-018-9981-670:1(221-238)Online publication date: 1-May-2018
  • (2018)Higher-order numerical scheme for linear quadratic problems with bang---bang controlsComputational Optimization and Applications10.1007/s10589-017-9948-z69:2(403-422)Online publication date: 1-Mar-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 55, Issue 2
DOI:10.1137/sjnaam.55.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. optimal control
  2. nonlinear systems
  3. state constraints
  4. Euler discretization
  5. rate of convergence

Author Tags

  1. 49M25
  2. 65L10
  3. 65L70
  4. 65K10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Error estimates for Runge–Kutta schemes of optimal control problems with index 1 DAEsComputational Optimization and Applications10.1007/s10589-023-00484-186:3(1299-1325)Online publication date: 1-Dec-2023
  • (2018)On the convergence of the gradient projection method for convex optimal control problems with bang---bang solutionsComputational Optimization and Applications10.1007/s10589-018-9981-670:1(221-238)Online publication date: 1-May-2018
  • (2018)Higher-order numerical scheme for linear quadratic problems with bang---bang controlsComputational Optimization and Applications10.1007/s10589-017-9948-z69:2(403-422)Online publication date: 1-Mar-2018

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media