Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Parameterized Complexity of Graph Cyclability

Published: 01 January 2017 Publication History

Abstract

The cyclability of a graph is the maximum integer $k$ for which every $k$ vertices lie on a cycle. The algorithmic version of the problem, given a graph $G$ and a nonnegative integer $k,$ decide whether the cyclability of $G$ is at least $k,$ is NP-hard. We study the parametrized complexity of this problem. We prove that this problem, parameterized by $k,$ is ${\sf co{-}W[1]}$-hard and that it does not admit a polynomial kernel on planar graphs, unless ${NP}\subseteq{\sf co}{-}{NP}/{poly}$. On the positive side, we give an FPT algorithm for planar graphs that runs in time $2^{2^{O(k^2\log k)}}\cdot n^2$. Our algorithm is based on a series of graph-theoretical results on cyclic linkages in planar graphs.

References

[1]
I. Adler, F. Dorn, F.V. Fomin, I. Sau, and D.M. Thilikos, Fast minor testing in planar graphs, in Proceedings of the 18th Annual European Symposium (1) Algorithms, Lecture Notes in Comput. Sci. 6346, Springer, New York, 2010, pp. 97--109.
[2]
I. Adler, S.G. Kolliopoulos, P.K. Krause, D. Lokshtanov, S. Saurabh, and D.M. Thilikos, Tight bounds for linkages in planar graphs, in Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 6755, Springer, New York, 2011, pp. 110--121.
[3]
R.E. Aldred, S. Bau, D.A. Holton, and B.D. McKay, Cycles through $23$ vertices in $3$-connected cubic planar graphs, Graphs Combin., 15 (1999), pp. 373--376.
[4]
H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25 (1996), pp. 1305--1317.
[5]
H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D.M. Thilikos, (meta) kernelization, in Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS '09, IEEE Computer Society, Washington, DC, 2009, pp. 629--638.
[6]
H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math., 28 (2014), pp. 277--305.
[7]
B. Bollobás, Extremal Graph Theory, Dover, Mineola, New York, 2004.
[8]
B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inform. and Comput., 85 (1990), pp. 12--75.
[9]
B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic---A language-theoretic approach, Encyclopedia Math. Appl. 138, Cambridge University Press, Cambridge, 2012.
[10]
M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015.
[11]
E.D. Demaine, M. Hajiaghayi, and D.M. Thilikos, The bidimensional theory of bounded-genus graphs, SIAM J. Discrete Math., 20 (2006), pp. 357--371.
[12]
R. Diestel, Graph Theory, Grad. Texts in Math. 173, 4th ed., Springer, New York, 2010.
[13]
G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr., 22 (1960), pp. 61--85.
[14]
R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[15]
R. Downey and M. Fellows, Fixed-parameter tractability and completeness. III. Some structural aspects of the W hierarchy, in Complexity Theory, Cambridge University Press, Cambridge, 1993, pp. 191--225.
[16]
R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness, in Proceedings of the 21st Manitoba Conference on Numerical Mathematics and Computing, 87 (1992), pp. 161--178.
[17]
R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness. I. Basic results, SIAM J. Comput., 24 (1995), pp. 873--921.
[18]
R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness II: On completeness for W[1], Theoret. Comput. Sci., 141 (1995), pp. 109--131.
[19]
R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity, Texts Comput. Sci., Springer, New York, 2013.
[20]
P. Erdös, Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Közl, 7 (1962), pp. 227--229.
[21]
E. Flandrin, H. Li, A. Marczyk, and M. Woźniak, A generalization of Dirac's theorem on cycles through $k$ vertices in $k$-connected graphs, Discrete Math., 307 (2007), pp. 878--884.
[22]
J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, New York, 2006.
[23]
F.V. Fomin, P.A. Golovach, and D.M. Thilikos, Contraction obstructions for treewidth, J. Combin. Theory Ser. B, 101 (2011), pp. 302--314.
[24]
M.R. Garey, D.S. Johnson, and R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput., 5 (1976), pp. 704--714.
[25]
J.F. Geelen, R.B. Richter, and G. Salazar, Embedding grids in surfaces, European J. Combin., 25 (2004), pp. 785--792.
[26]
M. Grötschel, Hypohamiltonian facets of the symmetric travelling salesman polytope, ZAMM Z. Angew. Math. Mech., 58 (1977), pp. 469--471.
[27]
Q.P. Gu and H. Tamaki, Improved bounds on the planar branchwidth with respect to the largest grid minor size, in Proceedings of the 21st International Symposium on Algorithms and Computation, (2010), pp. 85--96.
[28]
K.I. Kawarabayashi and P. Wollan, A shorter proof of the graph minor algorithm: The unique linkage theorem, in Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC '10, ACM, New York, 2010, pp. 687--694.
[29]
R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Habilitation thesis, Universitt Tübingen, 2002.
[30]
L. Perkovic and B.A. Reed, An improved algorithm for finding tree decompositions of small width, Internat. J. Found. Comput. Sci., 11 (2000), pp. 365--371.
[31]
M. Plummer and E. Györi, A nine vertex theorem for 3-connected claw-free graphs, Studia Sci. Math. Hungar., 38 (2001), pp. 233--244.
[32]
N. Robertson and P. Seymour, Graph minors. XXII. Irrelevant vertices in linkage problems, J. Combin. Theory Ser. B, 102 (2012), pp. 530--563.
[33]
N. Robertson and P.D. Seymour, Graph Minors. X. Obstructions to Tree-decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153--190.
[34]
N. Robertson and P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995), pp. 65--110.
[35]
N. Robertson and P.D. Seymour, Graph Minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995), pp. 65--110.
[36]
N. Robertson and P.D. Seymour, Graph minors. XXI. Graphs with unique linkages, J. Combin. Theory Ser. B, 99 (2009), pp. 583--616.
[37]
M. Watkins and D. Mesner, Cycles and connectivity in graphs, Canad. J. Math, 19 (1967), pp. 1319--1328.

Cited By

View all
  • (2023)Hitting Topological Minor Models in Planar Graphs is Fixed Parameter TractableACM Transactions on Algorithms10.1145/358368819:3(1-29)Online publication date: 10-Feb-2023
  • (2023)An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOLACM Transactions on Computation Theory10.1145/357127814:3-4(1-29)Online publication date: 1-Feb-2023
  • (2022)Cyclability in graph classesDiscrete Applied Mathematics10.1016/j.dam.2022.01.021313:C(147-178)Online publication date: 31-May-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 31, Issue 1
DOI:10.1137/sjdmec.31.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. cyclability
  2. linkages
  3. treewidth
  4. parameterized complexity

Author Tags

  1. 05C10
  2. 05C83
  3. 05C85
  4. 68R10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Hitting Topological Minor Models in Planar Graphs is Fixed Parameter TractableACM Transactions on Algorithms10.1145/358368819:3(1-29)Online publication date: 10-Feb-2023
  • (2023)An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOLACM Transactions on Computation Theory10.1145/357127814:3-4(1-29)Online publication date: 1-Feb-2023
  • (2022)Cyclability in graph classesDiscrete Applied Mathematics10.1016/j.dam.2022.01.021313:C(147-178)Online publication date: 31-May-2022

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media