Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Multilevel ensemble Kalman filtering

Published: 01 January 2016 Publication History

Abstract

This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

References

[1]
J. L. Anderson, Localization and sampling error correction in ensemble Kalman filter data assimilation, Monthly Weather Rev., 140 (2012), pp. 2359--2371.
[2]
R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance Stoch., 13 (2009), pp. 381--401.
[3]
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer, New York, 2009.
[4]
P. J Bickel and E. Levina, Covariance regularization by thresholding, Ann. Statist., 36 (2008), pp. 2577--2604.
[5]
P. J Bickel and E. Levina, Regularized estimation of large covariance matrices, Ann. Statist., 36 (2008), pp. 199--227.
[6]
C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems, Numer. Math., 130 (2015), pp. 579--613.
[7]
G. Burgers, P. Jan van Leeuwen, and G. Evensen, Analysis scheme in the ensemble Kalman filter, Monthly Weather Rev., 126 (1998), pp. 1719--1724.
[8]
O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov Models, Springer, New York, 2005.
[9]
J. Carlsson, K. S. Moon, A. Szepessy, R. Tempone, and G. Zouraris, Stochastic differential equations: Models and numerics, Lecture notes, KTH, Royal Institute of Technology, 2010, https://people.kth.se/ szepessy/sdepde.pdf.
[10]
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15.
[11]
N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R.Tempone, A continuation multilevel Monte Carlo algorithm, BIT, 55 (2015), pp. 399--432.
[12]
P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, New York, 2004.
[13]
A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput., 10 (2000), pp. 197--208.
[14]
G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. Oceans, 99 (1994), pp. 10143--10162.
[15]
G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), pp. 343--367.
[16]
R. P. Fedorenko, A relaxation method for solving elliptic difference equations, Zh. Vychisl. Mat. Mat. Fiz., 1 (1961), pp. 922--927.
[17]
M. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006, A. Keller, S. Heinrich, and H. Niederreiter, eds., Springer, Berlin, 2008, pp. 343--358.
[18]
M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617.
[19]
M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation, Ann. Appl. Probab., 24 (2014), pp. 1585--1620.
[20]
C. Graham and D. Talay, Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation, Stoch. Model. Appl. Probab. 68, Springer, Heidelberg, 2013.
[21]
A. Gregory, C. Cotter, and S. Reich, Multilevel Ensemble Transform Particle Filtering, preprint, arXiv:1509.00325, 2015.
[22]
A. Gut, Probability: A Graduate Course, Probab. Theory. Stochastic Process. 200, Springer, Berlin, 2005.
[23]
W. Hackbusch, Multi-Grid Methods and Applications, Springer Ser. Comput. Math. 4, Springer-Verlag, Berlin, 1985.
[24]
S. Heinrich, Multilevel Monte Carlo Methods, in Large-Scale Scientific Computing, Springer, New York, 2001, pp. 58--67.
[25]
V. H. Hoang, C. Schwab, and A. M. Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Problems, 29 (2013), 085010.
[26]
H. Hoel, E. von Schwerin, A. Szepessy, and R. Tempone, Implementation and analysis of an adaptive multilevel Monte Carlo algorithm, Monte Carlo Methods Appl., 20 (2014), pp. 1--41.
[27]
A. Jasra, K. Kamatani, K. J. H. Law, and Y. Zhou, Multilevel Particle Filter, preprint, arXiv:1510.04977, 2015.
[28]
A. H. Jazwinski, Stochastic Processes and Filtering Theory, vol. 63, Academic Press, New York, 1970.
[29]
R. E. Kalman et al., A new approach to linear filtering and prediction problems, J. Basic Engineering, 82 (1960), pp. 35--45.
[30]
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
[31]
C. Ketelsen, R. Scheichl, and A. L. Teckentrup, A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow, preprint, arXiv:1303.7343, 2013.
[32]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (N. Y.) 23, Springer-Verlag, Berlin, 1992.
[33]
K. Law, A. Stuart, and K. Zygalakis, Data Assimilation: A Mathematical Introduction, Springer-Verlag, Berlin, 2015.
[34]
K. J. H. Law, H. Tembine, and R. Tempone, Deterministic Mean-Field Ensemble Kalman Filtering, preprint, arXiv:1409.0628v4, 2014.
[35]
F. Le Gland, V. Monbet, V.-D. Tran, et al., Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, New York, 2011, pp. 598--631.
[36]
O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, J. Multivariate Anal., 88 (2004), pp. 365--411.
[37]
D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1968.
[38]
J. Mandel, L. Cobb, and J. D. Beezley, On the convergence of the ensemble Kalman filter, Appl. Math., 56 (2011), pp. 533--541.
[39]
S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), pp. 1979--2018.
[40]
O. Pajonk, B. V. Rosić, A. Litvinenko, and H. G. Matthies, A deterministic filter for non-Gaussian Bayesian estimation: Applications to dynamical system estimation with noisy measurements, Phys. D, 241 (2012), pp. 775--788.
[41]
Y.-F. Ren and H.-Y. Liang, On the best constant in Marcinkiewicz-Zygmund inequality, Statist. Probab. Lett., 53 (2001), pp. 227--233.

Cited By

View all
  • (2024)Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice modelsAdvances in Computational Mathematics10.1007/s10444-024-10153-450:4Online publication date: 3-Jul-2024
  • (2024)Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problemsFoundations of Computational Mathematics10.1007/s10208-023-09612-z24:4(1249-1304)Online publication date: 1-Aug-2024
  • (2023)Multi-fidelity covariance estimation in the log-euclidean geometryProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619415(24214-24235)Online publication date: 23-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 54, Issue 3
2016
632 pages
ISSN:0036-1429
DOI:10.1137/sjnaam.54.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. Monte Carlo
  2. multilevel
  3. filtering
  4. Kalman filter
  5. ensemble Kalman filter

Author Tags

  1. 65C30
  2. 65Y20
  3. 65M20
  4. 65c35

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice modelsAdvances in Computational Mathematics10.1007/s10444-024-10153-450:4Online publication date: 3-Jul-2024
  • (2024)Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problemsFoundations of Computational Mathematics10.1007/s10208-023-09612-z24:4(1249-1304)Online publication date: 1-Aug-2024
  • (2023)Multi-fidelity covariance estimation in the log-euclidean geometryProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619415(24214-24235)Online publication date: 23-Jul-2023
  • (2022)Multilevel estimation of normalization constants using ensemble Kalman–Bucy filtersStatistics and Computing10.1007/s11222-022-10094-232:3Online publication date: 1-Jun-2022
  • (2022)Improved Efficiency of Multilevel Monte Carlo for Stochastic PDE through Strong Pairwise CouplingJournal of Scientific Computing10.1007/s10915-022-02031-293:3Online publication date: 1-Dec-2022
  • (2021)A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limitNumerische Mathematik10.1007/s00211-021-01201-y148:1(141-186)Online publication date: 1-May-2021
  • (2021)Modern Monte Carlo methods for efficient uncertainty quantification and propagationWIREs Computational Statistics10.1002/wics.153913:5Online publication date: 5-Aug-2021

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media