Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Designing FPT Algorithms for Cut Problems Using Randomized Contractions

Published: 01 January 2016 Publication History

Abstract

We introduce a new technique for designing fixed-parameter algorithms for cut problems, called randomized contractions. We apply our framework to obtain the first fixed-parameter algorithms (FPT algorithms) with exponential speed up for the Steiner Cut and Node Multiway Cut-Uncut problems. We prove that the parameterized version of the Unique Label Cover problem, which is the base of the Unique Games Conjecture, can be solved in $2^{O(k^2\log |\Sigma|)}n^4\log n$ deterministic time (even in the stronger, vertex-deletion variant), where $k$ is the number of unsatisfied edges and $|\Sigma|$ is the size of the alphabet. As a consequence, we show that one can in polynomial time solve instances of Unique Games where the number of edges allowed not to be satisfied is upper bounded by $O(\sqrt{\log n})$ to optimality, which improves over the trivial $O(1)$ upper bound. We prove that the Steiner Cut problem can be solved in $2^{O(k^2\log k)}n^4\log n$ deterministic time and $\tilde{O}(2^{O(k^2\log k)}n^2)$ randomized time, where $k$ is the size of the cutset. This result improves the double exponential running time of the recent work of Kawarabayashi and Thorup presented at FOCS'11. We show how to combine considering “cut” and “uncut” constraints at the same time. More precisely, we define a robust problem, Node Multiway Cut-Uncut, that can serve as an abstraction of introducing uncut constraints and show that it admits an algorithm running in $2^{O(k^2\log k)}n^4\log n$ deterministic time, where $k$ is the size of the cutset. To the best of our knowledge, the only known way of tackling uncut constraints was via the approach of Marx, O'Sullivan, and Razgon [ACM Trans. Algorithms, 9 (2013), 30], which yields algorithms with double exponential running time. An interesting aspect of our algorithms is that they can handle positive real weights.

References

[1]
A. Agarwal, N. Alon, and M. Charikar, Improved approximation for directed cut problems, in Proceedings of STOC'07, 2007, pp. 671--680.
[2]
N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844--856.
[3]
S. Arora, B. Barak, and D. Steurer, Subexponential algorithms for unique games and related problems, J. ACM, 62 (2015), 42.
[4]
V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289--297.
[5]
H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos, (Meta) kernelization, in Proceedings of FOCS'09, 2009, pp. 629--638.
[6]
N. Bousquet, J. Daligault, and S. Thomassé, Multicut is FPT, in Proceedings of STOC'11, 2011, pp. 459--468.
[7]
K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen, Parameterized complexity dichotomy for Steiner multicut, in Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 2015, Garching, Germany, E. W. Mayr and N. Ollinger, eds., LIPIcs 30, Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2015, pp. 157--170.
[8]
M. Charikar, K. Makarychev, and Y. Makarychev, Near-optimal algorithms for maximum constraint satisfaction problems, ACM Trans. Algorithms, 5 (2009).
[9]
C. Chekuri, S. Guha, and J. Naor, The Steiner k-cut problem, SIAM J. Discrete Math., 20 (2006), pp. 261--271.
[10]
J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node multiway cut problem, Algorithmica, 55 (2009), pp. 1--13.
[11]
J. Chen, Y. Liu, S. Lu, B. O'Sullivan, and I. Razgon, A fixed-parameter algorithm for the directed feedback vertex set problem, J. ACM, 55 (2008).
[12]
R. H. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, Designing FPT algorithms for cut problems using randomized contractions, in proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, 2012, pp. 460--469.
[13]
R. H. Chitnis, M. Cygan, M. T. Hajiaghayi, and D. Marx, Directed subset feedback vertex set is fixed-parameter tractable, ACM Trans. Algorithms, 11 (2015), 28.
[14]
R. H. Chitnis, M. Hajiaghayi, and D. Marx, Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset, SIAM J. Comput., 42 (2013), pp. 1674--1696.
[15]
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015.
[16]
M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Minimum bisection is fixed parameter tractable, in Proceedings of the Symposium on Theory of Computing, STOC 2014, New York, 2014, D. B. Shmoys, ed., ACM, 2014, pp. 323--332.
[17]
M. Cygan, M. Pilipczuk, and M. Pilipczuk, On group feedback vertex set parameterized by the size of the cutset, in Proceedings of WG'12, 2012, pp. 194--205.
[18]
M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, On multiway cut parameterized above lower bounds, ACM Trans. Comput. Theory, 5 (2013), 3.
[19]
M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, Subset feedback vertex set is fixed-parameter tractable, SIAM J. Discrete Math., 27 (2013), pp. 290--309.
[20]
R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[21]
R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts in Comput. Sci., Springer, New York, 2013.
[22]
G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica, 20 (1998), pp. 151--174.
[23]
G. Even, J. Naor, and L. Zosin, An 8-approximation algorithm for the subset feedback vertex set problem, SIAM J. Comput., 30 (2000), pp. 1231--1252.
[24]
M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theoret. Comput. Sci., 410 (2009), pp. 53--61.
[25]
J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoret. Comput. Sci. EATCS Ser., Springer, New York 2006, http://www.worldcat.org/isbn/3540299521.
[26]
F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Linear kernels for (connected) dominating set on H-minor-free graphs, in Proceedings of SODA'12, 2012, pp. 82--93.
[27]
N. Garg, V. V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theorems and their applications, SIAM J. Comput., 25 (1996), pp. 235--251.
[28]
N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica, 18 (1997), pp. 3--20.
[29]
N. Garg, V. V. Vazirani, and M. Yannakakis, Multiway cuts in node weighted graphs, J. Algorithms, 50 (2004), pp. 49--61.
[30]
F. Granot and R. Hassin, Multi-terminal maximum flows in node capacitated networks, Discrete Appl. Math, 13 (1986), pp. 157--163.
[31]
M. Grohe and D. Marx, Structure theorem and isomorphism test for graphs with excluded topological subgraphs, SIAM J. Comput., 44 (2015), pp. 114--159.
[32]
S. Guillemot, FPT algorithms for path-transversal and cycle-transversal problems, Discrete Optim., 8 (2011), pp. 61--71.
[33]
S. Guillemot, Parameterized complexity and approximability of the longest compatible sequence problem, Discrete Optim., 8 (2011), pp. 50--60.
[34]
Y. Iwata, M. Wahlström, and Y. Yoshida, Half-Integrality, LP-Branching and FPT Algorithms, arXiv:1310.2841, 2013.
[35]
D. R. Karger, Minimum cuts in near-linear time, J. ACM, 47 (2000), pp. 46--76.
[36]
D. R. Karger, P. N. Klein, C. Stein, M. Thorup, and N. E. Young, Rounding algorithms for a geometric embedding of minimum multiway cut, Math. Oper. Res., 29 (2004), pp. 436--461.
[37]
K. Kawarabayashi and M. Thorup, The minimum k-way cut of bounded size is fixed-parameter tractable, in Proceedings of FOCS'11, 2011, pp. 160--169.
[38]
S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of STOC'02, 2002, pp. 767--775.
[39]
S. Khot, On the unique games conjecture (invited survey), in Proceedings of the IEEE Conference on Computational Complexity, 2010, pp. 99--121.
[40]
S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström, Fixed-parameter tractability of multicut in directed acyclic graphs, SIAM J. Discrete Math., 29 (2015), pp. 122--144.
[41]
S. Kratsch and M. Sorge, On kernelization and approximation for the vector connectivity problem, in Proceedings of the 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, Patras, Greece, T. Husfeldt and I. A. Kanj, eds., of LIPIcs 43, Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2015, pp. 377--388.
[42]
D. Lokshtanov and D. Marx, Clustering with local restrictions, Inform and Comput., 222 (2013), pp. 278--292.
[43]
D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh, Faster parameterized algorithms using linear programming, ACM Trans. Algorithms, 11 (2014), pp. 15:1--15:31.
[44]
D. Marx, Parameterized graph separation problems, Theoret. Comput. Sci., 351 (2006), pp. 394--406.
[45]
D. Marx, B. O'Sullivan, and I. Razgon, Finding small separators in linear time via treewidth reduction, ACM Trans. Algorithms, 9 (2013), 30.
[46]
D. Marx and I. Razgon, Fixed-parameter tractability of multicut parameterized by the size of the cutset, SIAM J. Comput., 43 (2014), pp. 355--388.
[47]
H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583--596.
[48]
J. Naor and Y. Rabani, Tree packing and approximating k-cuts, in Proceedings of SODA'01, 2001, pp. 26--27.
[49]
M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandomization, in Proceedings of FOCS'95, 1995, pp. 182--191.
[50]
N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh, LP can be a cure for parameterized problems, in Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, Paris, France, C. Dürr and T. Wilke, eds., LIPIcs 14, Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2012, pp. 338--349.
[51]
M. Pilipczuk and M. Wahlström, Directed multicut is W[1]-hard, even for four terminal pairs, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, R. Krauthgamer, ed., SIAM, 2016, pp. 1167--1178.
[52]
R. Ravi and A. Sinha, Approximating k-cuts via network strength as a lagrangean relaxation, European J. Oper. Res., 186 (2008), pp. 77--90.
[53]
I. Razgon, Large Isolating Cuts Shrink the Multiway Cut, CoRR abs/1104.5361, 2011.
[54]
I. Razgon and B. O'Sullivan, Almost 2-SAT is fixed-parameter tractable, J. Comput. System Sci., 75 (2009), pp. 435--450.
[55]
B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res. Lett., 32 (2004), pp. 299--301.
[56]
P. D. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281--288.
[57]
M. Wahlström, Half-integrality, LP-branching and FPT algorithms, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, OR, C. Chekuri, ed., SIAM, 2014, pp. 1762--1781.

Cited By

View all
  • (2024)Contraction Decomposition in Unit Disk Graphs and Algorithmic Applications in Parameterized ComplexityACM Transactions on Algorithms10.1145/364859420:2(1-50)Online publication date: 13-Apr-2024
  • (2024)Flow-augmentation II: Undirected GraphsACM Transactions on Algorithms10.1145/364110520:2(1-26)Online publication date: 13-Mar-2024
  • (2022)Fixed-parameter tractability of graph isomorphism in graphs with an excluded minorProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520076(914-923)Online publication date: 9-Jun-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 45, Issue 4
DOI:10.1137/smjcat.45.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. fixed-parameter tractability
  2. randomized contractions
  3. graph separations problems
  4. unique label cover

Author Tags

  1. 68Q25
  2. 68W40

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Contraction Decomposition in Unit Disk Graphs and Algorithmic Applications in Parameterized ComplexityACM Transactions on Algorithms10.1145/364859420:2(1-50)Online publication date: 13-Apr-2024
  • (2024)Flow-augmentation II: Undirected GraphsACM Transactions on Algorithms10.1145/364110520:2(1-26)Online publication date: 13-Mar-2024
  • (2022)Fixed-parameter tractability of graph isomorphism in graphs with an excluded minorProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520076(914-923)Online publication date: 9-Jun-2022
  • (2022)Lossy planarization: a constant-factor approximate kernelization for planar vertex deletionProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520021(900-913)Online publication date: 9-Jun-2022
  • (2022)Directed flow-augmentationProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520018(938-947)Online publication date: 9-Jun-2022
  • (2022)Parameterized Complexity of Elimination Distance to First-Order Logic PropertiesACM Transactions on Computational Logic10.1145/351712923:3(1-35)Online publication date: 6-Apr-2022
  • (2022)Grundy Coloring and Friends, Half-Graphs, BicliquesAlgorithmica10.1007/s00453-022-01001-285:1(1-28)Online publication date: 16-Jul-2022
  • (2021)Vertex deletion parameterized by elimination distance and even lessProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451068(1757-1769)Online publication date: 15-Jun-2021
  • (2021)Parameterized complexity of elimination distance to first-order logic propertiesProceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science10.1109/LICS52264.2021.9470540(1-13)Online publication date: 29-Jun-2021
  • (2020)Multi-budgeted Directed CutsAlgorithmica10.1007/s00453-019-00609-182:8(2135-2155)Online publication date: 1-Aug-2020

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media