Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

H-Representation of the Kimura-3 Polytope for the $m$-Claw Tree

Published: 01 January 2017 Publication History

Abstract

Given a group-based Markov model on a tree, one can compute the vertex representation of a polytope describing a toric variety associated with the algebraic statistical model. In the cases of ${\mathbb Z}_2$ and ${\mathbb Z}_2\times{\mathbb Z}_2$, these polytopes have applications in the field of phylogenetics. We provide a half-space representation of the polytope for the $m$-claw tree where $G={\mathbb Z}_2\times{\mathbb Z}_2$. This choice of group corresponds to the Kimura-3 model of evolution.

References

[1]
E. S. Allman, S. Petrovic, J. A. Rhodes, and S. Sullivant, Identifiability of two-tree mixtures for group-based models, IEEE/ACM Trans. Comput. Biol. Bioinform., 8 (2011), pp. 710--722.
[2]
W. Buczynska and J. A. Wisniewski, On the geometry of binary symmetric models of phylogenetic trees, J. European Math. Soc., 9 (2007), pp. 609--635.
[3]
M. Casanellas and J. Fernández-Sánchez, Geometry of the Kimura 3-parameter model, Adv. Appl. Math., 41 (2008), pp. 265--292.
[4]
M. Casanellas and J. Fernández-Sánchez, Relevant phylogenetic invariants of evolutionary models, J. Math. Pures Appl., 96 (2011), pp. 207--229.
[5]
M. Casanellas, J. Fernández-Sánchez, and M. Michałek, Local Description of Phylogenetic Group-Based Models, preprint, https://arxiv.org/abs/1402.6945, 2014.
[6]
J. Cavender and J. Felsenstein, Invariants of phylogenies in a simple case with discrete states, J. Classification, 4 (1987), pp. 57--71.
[7]
D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties, AMS, Providence, RI, 2011.
[8]
M. Donten-Bury and M. Michałek, Phylogenetic invariants for group-based models, J. Algebraic Statist., 3 (2012), pp. 44--63.
[9]
N. Eriksson, Tree construction using singular value decomposition, in Algebraic Statistics for Computational Biology, Cambridge University Press, New York, 2005, pp. 347--358.
[10]
N. Eriksson, K. Ranestad, B. Sturmfels, and S. Sullivant, Phylogenetic algebraic geometry, in Projective Varieties with Unexpected Properties, Walter de Gruyter, Berlin, 2005, pp. 237--255.
[11]
S. N. Evans and T. Speed, Invariants of some probability models used in phylogenetic inference, Ann. Statist., 21 (1993), pp. 355--377.
[12]
J. Fernández-Sánchez and M. Casanellas, Invariant versus classical quartet inference when evolution is heterogeneous across sites and lineages, System. Biol., 65 (2015), pp. 280--291.
[13]
W. Fulton, Introduction to Toric Varieties, Ann. Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993.
[14]
M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Molec. Evolution, 16 (1980), pp. 111--120.
[15]
K. Kubjas, Hilbert polynomial of the Kimura 3-parameter model, J. Algebraic Statist., 3 (2012), pp. 64--69.
[16]
K. Kubjas and C. Manon, Conformal blocks, Berenstein--Zelevinsky triangles, and group-based models, J. Algebraic Combin., 40 (2014), pp. 861--886.
[17]
C. Long and S. Sullivant, Identifiability of 3-class Jukes--Cantor mixtures, Adv. Appl. Math., 64 (2015), pp. 89--110.
[18]
C. A. Manon, The Algebra of Conformal Blocks, preprint, https://arxiv.org/abs/0910.0577, 2009.
[19]
F. A. Matsen, Fourier transform inequalities for phylogenetic trees, IEEE/ACM Trans. Comput. Biol. Bioinform., 6 (2009), pp. 89--95.
[20]
M. Michałek, Toric geometry of the 3-Kimura model for any tree, Adv. Geom., 14 (2014), pp. 11--30.
[21]
L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, Cambridge, UK, 2005.
[22]
J. P. Rusinko and B. Hipp, Invariant based quartet puzzling, Alg. Molec. Biol., 7 (2012), p. 35.
[23]
B. Sturmfels and S. Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol., 12 (2005), pp. 204--228.
[24]
S. Sullivant, Toric fiber products, J. Algebra, 316 (2007), pp. 560--577.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 31, Issue 2
DOI:10.1137/sjdmec.31.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. facet description
  2. polytopes
  3. group-based phylogenetic models

Author Tag

  1. 52B20

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media