Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Structure of Graphs with Locally Restricted Crossings

Published: 01 January 2017 Publication History

Abstract

We consider relations between the size, treewidth, and local crossing number (maximum number of crossings per edge) of graphs embedded on topological surfaces. We show that an $n$-vertex graph embedded on a surface of genus $g$ with at most $k$ crossings per edge has treewidth $O(\sqrt{(g+1)(k+1)n})$ and layered treewidth $O((g+1)k)$ and that these bounds are tight up to a constant factor. In the special case of $g=0$, so-called $k$-planar graphs, the treewidth bound is $O(\sqrt{(k+1)n})$, which is tight and improves upon a known $O((k+1)^{3/4}n^{1/2})$ bound. Analogous results are proved for map graphs defined with respect to any surface. Finally, we show that for $g<m$, every $m$-edge graph can be embedded on a surface of genus $g$ with $O((m/(g+1))\log^2 g)$ crossings per edge, which is tight to a polylogarithmic factor.

References

[1]
O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, Treewidth governs the complexity of target set selection, Discrete Optim., 8 (2011), pp. 87--96, https://doi.org/10.1016/j.disopt.2010.09.007.
[2]
H. L. Bodlaender, A partial $k$-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209 (1998), pp. 1--45, https://doi.org/10.1016/S0304-3975(97)00228-4.
[3]
H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth, Inform. and Comput., 243 (2015), pp. 86--111, https://doi.org/10.1016/j.ic.2014.12.008.
[4]
Z.-Z. Chen, Approximation algorithms for independent sets in map graphs, J. Algorithms, 41 (2001), pp. 20--40, https://doi.org/10.1006/jagm.2001.1178.
[5]
Z.-Z. Chen, New bounds on the edge number of a $k$-map graph, J. Graph Theory, 55 (2007), pp. 267--290, https://doi.org/10.1002/jgt.20237.
[6]
Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou, Map graphs, J. ACM, 49 (2002), pp. 127--138, https://doi.org/10.1145/506147.506148.
[7]
M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015.
[8]
E. D. Demaine, F. V. Fomin, M.T. Hajiaghayi, and D. M. Thilikos, Bidimensional parameters and local treewidth, SIAM J. Discrete Math., 18 (2004/05), pp. 501--511, https://doi.org/10.1137/S0895480103433410.
[9]
E. D. Demaine, F. V. Fomin, M.T. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms for $(k,r)$-center in planar graphs and map graphs, ACM Trans. Algorithms, 1 (2005), pp. 33--47, https://doi.org/10.1145/1077464.1077468.
[10]
E. D. Demaine and M.T. Hajiaghayi, Equivalence of local treewidth and linear local treewidth and its algorithmic applications, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '04), 2004, SIAM, Philadelphia, pp. 840--849, http://dl.acm.org/citation.cfm?id=982792.982919.
[11]
V. Dujmović and F. Frati, Stack and queue layouts via layered separators, in Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016), Lecture Notes in Comput. Sci. 9801, Springer, New York, 2016, pp. 511--518, https://doi.org/10.1007/978-3-319-50106-2_39.
[12]
V. Dujmović, P. Morin, and D. R. Wood, Layered Separators in Minor-Closed Graph Classes with Applications, preprint, arXiv:1306.1595, 2013.
[13]
V. Dujmović, A. Sidiropoulos, and D. R. Wood, Layouts of expander graphs, Chic. J. Theoret. Comput. Sci., 2016 (2015), http://cjtcs.cs.uchicago.edu/articles/2016/1/contents.html.
[14]
Z. Dvorák and S. Norin, Treewidth of Graphs with Balanced Separations, preprint, arXiv:1408.3869, 2014.
[15]
D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, 27 (2000), pp. 275--291, https://doi.org/10.1007/s004530010020.
[16]
F. V. Fomin, D. Lokshtanov, and S. Saurabh, Bidimensionality and geometric graphs, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, 2012, pp. 1563--1575, https://doi.org/10.1137/1.9781611973099.124.
[17]
J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of bounded genus, J. Algorithms, 5 (1984), pp. 391--407, https://doi.org/10.1016/0196-6774(84)90019-1.
[18]
A. Grigoriev and H. L. Bodlaender, Algorithms for graphs embeddable with few crossings per edge, Algorithmica, 49 (2007), pp. 1--11, https://doi.org/10.1007/s00453-007-0010-x, https://doi.org/10.1007/BF01917434.
[19]
M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combinatorica, 23 (2003), pp. 613--632, https://doi.org/10.1007/s00493-003-0037-9.
[20]
M. Grohe and D. Marx, On tree width, bramble size, and expansion, J. Combin. Theory Ser. B, 99 (2009), pp. 218--228, https://doi.org/10.1016/j.jctb.2008.06.004.
[21]
R. K. Guy, T. Jenkyns, and J. Schaer, The toroidal crossing number of the complete graph, J. Combin. Theory, 4 (1968), pp. 376--390, https://doi.org/10.1016/S0021-9800(68)80063-8.
[22]
R. Halin, $S$-functions for graphs, J. Geom., 8 (1976), pp. 171--186.
[23]
S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.), 43 (2006), pp. 439--561, https://doi.org/10.1090/S0273-0979-06-01126-8.
[24]
T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms, J. ACM, 46 (1999), pp. 787--832, https://doi.org/10.1145/331524.331526.
[25]
Y. Otachi and R. Suda, Bandwidth and pathwidth of three-dimensional grids, Discrete Math., 311 (2011), pp. 881--887, https://doi.org/10.1016/j.disc.2011.02.019.
[26]
J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica, 17 (1997), pp. 427--439, https://doi.org/10.1007/BF01215922.
[27]
B. A. Reed, Tree width and tangles: A new connectivity measure and some applications, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 241, Cambridge University Press, Cambridge, 1997, pp. 87--162, https://doi.org/10.1017/CBO9780511662119.006.
[28]
B. A. Reed, Algorithmic aspects of tree width, in Recent Advances in Algorithms and Combinatorics, Springer, New York, 2003, pp. 85--107, https://doi.org/10.1007/0-387-22444-0_4.
[29]
N. Robertson and P. D. Seymour, Graph minors I--XXIII, J. Combin. Theory Ser. B, 1983--2012.
[30]
N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7 (1986), pp. 309--322, https://doi.org/10.1016/0196-6774(86)90023-4.
[31]
M. Schaefer, The graph crossing number and its variants: A survey, Electron. J. Combin., DS21, 2014, http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21.
[32]
F. Shahrokhi, New representation results for planar graphs, in Proceedings of 29th European Workshop on Computational Geometry (EuroCG 2013), 2013, pp. 177--180.
[33]
F. Shahrokhi, L. A. Székely, O. Sýkora, and I. Vrťo, Drawings of graphs on surfaces with few crossings, Algorithmica, 16 (1996), pp. 118--131, https://doi.org/10.1007/s004539900040.

Cited By

View all
  • (2024)Recognizing Map Graphs of Bounded TreewidthAlgorithmica10.1007/s00453-023-01180-686:2(613-637)Online publication date: 1-Feb-2024
  • (2019)Track Layouts, Layered Path Decompositions, and Leveled PlanarityAlgorithmica10.1007/s00453-018-0487-581:4(1561-1583)Online publication date: 1-Apr-2019

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 31, Issue 2
DOI:10.1137/sjdmec.31.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. treewidth
  2. pathwidth
  3. layered treewidth
  4. local treewidth
  5. 1-planar
  6. $k$-planar
  7. map graph
  8. graph minor
  9. local crossing number
  10. separator

Author Tags

  1. 05C83
  2. 05C62
  3. 05C10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Recognizing Map Graphs of Bounded TreewidthAlgorithmica10.1007/s00453-023-01180-686:2(613-637)Online publication date: 1-Feb-2024
  • (2019)Track Layouts, Layered Path Decompositions, and Leveled PlanarityAlgorithmica10.1007/s00453-018-0487-581:4(1561-1583)Online publication date: 1-Apr-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media