Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Local Volatility, Conditioned Diffusions, and Varadhan's Formula

Published: 01 January 2018 Publication History

Abstract

We study classes of stochastic volatility models and derive asymptotic formulae for the associated local volatility surface. This gives new insight into the geometry of a reasonable local volatility surface, especially in extreme moneyness regimes. Specifically, we show that in the Stein--Stein model the squared local volatility grows linearly in the moneyness variable, in surprising agreement with Lee's celebrated moment formula for the growth of implied volatility. Mathematically, our key tool is a version of Varadhan's formula.

References

[1]
A. Agrachev and P. W. Lee, Continuity of optimal control costs and its application to weak KAM theory, Calc. Var. Partial Differential Equations, 39 (2010), pp. 213--232, https://doi.org/10.1007/s00526-010-0308-4.
[2]
M. Avellaneda, D. Boyer-Olson, J. Busca, and P. Friz, Application of large deviation methods to the pricing of index options in finance, C. R. Math. Acad. Sci. Paris, 336 (2003), pp. 263--266.
[3]
I. Bailleul, Large Deviation Principle for Bridges of Degenerate Diffusion Processes, preprint, https://arxiv.org/abs/1303.2854, 2013.
[4]
I. Bailleul, L. Mesnager, and J. Norris, Small-Time Fluctuations for the Bridge of a Sub-Riemannian Diffusion, preprint, https://arxiv.org/abs/1505.03464, 2015.
[5]
P. Baldi and L. Caramellino, General Freidlin-Wentzell large deviations and positive diffusions, Statist. Probab. Lett., 81 (2011), pp. 1218--1229.
[6]
G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus, Ann. Sci. École Norm. Sup. (4), 21 (1988), pp. 307--331.
[7]
G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Related Fields, 90 (1991), pp. 377--402.
[8]
H. Berestycki, J. Busca, and I. Florent, Computing the implied volatility in stochastic volatility models, Comm. Pure Appl. Math., 57 (2004), pp. 1352--1373.
[9]
J.-M. Bismut, Large Deviations and the Malliavin Calculus, Birkhäuser, Boston, 1984.
[10]
P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), pp. 773--802.
[11]
S. De Marco, Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions, Ann. Appl. Probab., 4 (2011), pp. 1282--1321.
[12]
S. De Marco, P. Friz, and S. Gerhold, Rational shapes of local volatility, Risk, 2013, pp. 82--87.
[13]
J.-D. Deuschel, P. K. Friz, A. Jacquier, and S. Violante, Marginal density expansions for diffusions and stochastic volatility I: Theoretical foundations, Comm. Pure Appl. Math., 67 (2014), pp. 40--82.
[14]
J.-D. Deuschel, P. K. Friz, A. Jacquier, and S. Violante, Marginal density expansions for diffusions and stochastic volatility II: Applications, Comm. Pure Appl. Math., 67 (2014), pp. 321--350.
[15]
B. Dupire, Pricing with a smile, Risk, 7 (1994), pp. 18--20.
[16]
P. Friz, C. Bayer, and P. Laurence, On the probability density function of baskets, in Large Deviations and Asymptotic Methods in Finance, Springer Proc. Math. Stat. 110, Springer, 2015, pp. 449--472.
[17]
P. Friz and S. Gerhold, Extrapolation analytics for Dupire's local volatility, in Large Deviations and Asymptotic Methods in Finance, Springer Proc. Math. Stat. 110, Springer, 2015, pp. 273--286, https://doi.org/10.1007/978-3-319-11605-1_10.
[18]
P. Friz, S. Gerhold, A. Gulisashvili, and S. Sturm, On refined volatility smile expansion in the Heston model, Quant. Finance, 11 (2011), pp. 1151--1164.
[19]
J. Gatheral, The Volatility Surface: A Practitioner's Guide, Wiley, 2006.
[20]
J. Gatheral, E. Hsu, P. Laurence, C. Ouyang, and T. Wang, Asymptotics of implied volatility in local volatility models, Math. Finance, 22 (2012), pp. 591--620.
[21]
J. Gatheral and T.-H. Wang, The heat-kernel most-likely-path approximation, Int. J. Theoret. Appl. Finance, 15 (2012), 1250001.
[22]
A. Gulisashvili, Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes, SIAM J. Financial Math., 1 (2010), pp. 609--641, https://doi.org/10.1137/090762713.
[23]
A. Gulisashvili, Analytically Tractable Stochastic Stock Price Models, Springer-Verlag, 2012.
[24]
I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Itô differential, Probab. Theory Related Fields, 71 (1986), pp. 501--516.
[25]
P. Henry-Labordère, Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing, Financial Math. Ser., Chapman & Hall/CRC, 2008.
[26]
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud., 6 (1993), pp. 327--343.
[27]
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed., North-Holland, 1989.
[28]
V. Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.
[29]
M. Keller-Ressel, Moment explosions and long-term behavior of affine stochastic volatility models, Math. Finance, 21 (2011), pp. 73--98.
[30]
S. Kusuoka and Y. Osajima, A remark on the asymptotic expansion of density function of Wiener functionals, J. Funct. Anal., 255 (2008), pp. 2545--2562.
[31]
S. Kusuoka and D. Stroock, Application of the Malliavin calculus, part II, J. Faculty Sci. Univ. Tokyo Sect. IA Math., 32 (1985), pp. 1--76.
[32]
R. Léandre, Intégration dans la fibre associée à une diffusion dégénérée, Probab. Theory Related Fields, 76 (1987), pp. 341--358.
[33]
R. Léandre, Majoration en temps petit de la densité d'une diffusion dégénérée, Probab. Theory Related Fields, 74 (1987), pp. 289--294, https://doi.org/10.1007/BF00569994.
[34]
R. Léandre, Minoration en temps petit de la densité d'une diffusion dégénérée, J. Funct. Anal., 74 (1987), pp. 399--414.
[35]
R. W. Lee, The moment formula for implied volatility at extreme strikes, Math. Finance, 14 (2004), pp. 469--480.
[36]
S. Molchanov, Diffusion processes and Riemannian geometry, Russian Math. Surveys, 30 (1975), pp. 1--63.
[37]
D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 2006.
[38]
R. Schöbel and J. Zhu, Stochastic volatility with an Ornstein--Uhlenbeck process: An extension, Eur. Finance Rev., 3 (1999), pp. 23--46.
[39]
E. M. Stein and J. C. Stein, Stock price distribution with stochastic volatility: An analytic approach, Rev. Financial Stud., 4 (1991), pp. 727--752.
[40]
S. Takanobu and S. Watanabe, Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integrations, in Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Papers from the Twenty-Sixth Taniguchi International Workshop held in Sanda, August 31--September 5, 1990 and the symposium held at Kyoto University, Kyoto, September 6--8, 1990, K. D. Elworthy and N. Ikeda, eds., Pitman Res. Notes Math. Ser. 284, Longman Scientific & Technical; copublished in the United States with John Wiley & Sons, Inc., 1993, pp. 194--241.
[41]
S. Varadhan, Diffusion processes over a small time interval, Comm. Pure Appl. Math., 20 (1967), pp. 659--685.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics  Volume 9, Issue 2
EISSN:1945-497X
DOI:10.1137/sjfmbj.9.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2018

Author Tags

  1. conditional density asymptotics
  2. local volatility
  3. stochastic volatility
  4. large deviations

Author Tags

  1. 91G20
  2. 91G80
  3. 60H30
  4. 65C30

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media