Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hardness of Continuous Local Search: : Query Complexity and Cryptographic Lower Bounds

Published: 01 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Local search proved to be an extremely useful tool when facing hard optimization problems (e.g., via the simplex algorithm, simulated annealing, or genetic algorithms). Although powerful, it has its limitations: there are functions for which exponentially many queries are needed to find a local optimum. In many contexts, the optimization problem is defined by a continuous function which might offer an advantage when performing the local search. This leads us to study the following natural question: How hard is continuous local search? The computational complexity of such search problems is captured by the complexity class ${CLS}$ [C. Daskalakis and C. H. Papadimitriou, Proceedings of SODA'11, 2011], which is contained in the intersection of ${PLS}$ and ${PPAD}$, two important subclasses of ${TFNP}$ (the class of ${NP}$ search problems with a guaranteed solution). In this work, we show the first hardness results for ${CLS}$ (the smallest nontrivial class among the currently defined subclasses of $\mathbf{TFNP}$). Our hardness results are in terms of black-box (where only oracle access to the function is given) and white-box (where the function is represented succinctly by a circuit). In the black-box case, we show instances for which any (computationally unbounded) randomized algorithm must perform exponentially many queries in order to find a local optimum. In the white-box case, we show hardness for computationally bounded algorithms under cryptographic assumptions. Our results demonstrate a strong conceptual barrier precluding design of efficient algorithms for solving local search problems even over continuous domains. As our main technical contribution we introduce a new total search problem which we call End-of-Metered-Line. The special structure of End-of-Metered-Line enables us to (1) show that it is contained in ${CLS}$, (2) prove hardness for it in both the black-box and the white-box setting, and (3) extend to ${CLS}$ a variety of results previously known only for ${PPAD}$.

    References

    [1]
    S. Aaronson, Lower bounds for local search by quantum arguments, SIAM J. Comput., 35 (2006), pp. 804--824.
    [2]
    T. Abbott, D. Kane, and P. Valiant, On Algorithms for Nash Equilibria, unpublished manuscript, http://web.mit.edu/tabbott/Public/final.pdf, 2004.
    [3]
    D. Aldous, Minimization algorithms and random walk on the $d$-cube, Ann. Probab., 11 (1983), pp. 403--413.
    [4]
    B. Applebaum and Z. Brakerski, Obfuscating circuits via composite-order graded encoding, in Proceedings of the 12th Theory of Cryptography Conference, Part II, Warsaw, 2015, pp. 528--556.
    [5]
    G. Asharov and G. Segev, Limits on the power of indistinguishability obfuscation and functional encryption, SIAM J. Comput., 45 (2016), pp. 2117--2176.
    [6]
    Y. Babichenko, Query complexity of approximate Nash equilibria, J. ACM, 63 (2016), 36.
    [7]
    B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang, On the (im)possibility of obfuscating programs, J. ACM, 59 (2012), 6.
    [8]
    C. H. Bennett, Time/space trade-offs for reversible computation, SIAM J. Comput., 18 (1989), pp. 766--776.
    [9]
    N. Bitansky, A. Degwekar, and V. Vaikuntanathan, Structure vs. hardness through the obfuscation lens, in Advances in Cryptology---CRYPTO 2017, Part I, J. Katz and H. Shacham, eds., Lecture Notes in Comput. Sci. 10401, Springer, New York, 2017, pp. 696--723.
    [10]
    N. Bitansky, O. Paneth, and A. Rosen, On the cryptographic hardness of finding a Nash equilibrium, in Proceedings of the 56th IEEE Annual Symposium on Foundations of Computer Science, Berkeley, CA, 2015, pp. 1480--1498.
    [11]
    Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs, Obfuscating conjunctions under entropic ring LWE, in Proceedings of the 2016 ACM Conference ITCS, Cambridge, MA, 2016, pp. 147--156.
    [12]
    J. Buresh-Oppenheim and T. Morioka, Relativized NP search problems and propositional proof systems, in Proceedings of the 19th Annual IEEE Conference on Computational Complexity, Amherst, MA, 2004, pp. 54--67.
    [13]
    X. Chen and X. Deng, Matching algorithmic bounds for finding a Brouwer fixed point, J. ACM, 55 (2008).
    [14]
    X. Chen and X. Deng, On the complexity of 2D discrete fixed point problem, Theoret. Comput. Sci., 410 (2009), pp. 4448--4456.
    [15]
    X. Chen, X. Deng, and S. Teng, Settling the complexity of computing two-player Nash equilibria, J. ACM, 56 (2009).
    [16]
    X. Chen and S. Teng, Paths beyond local search: A tight bound for randomized fixed-point computation, in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, Providence, RI, 2007, pp. 124--134.
    [17]
    A. R. Choudhuri, P. Hubáček, C. Kamath, K. Pietrzak, A. Rosen, and G. N. Rothblum, Finding a Nash equilibrium is no easier than breaking Fiat-Shamir, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, Phoenix, AZ, 2019, pp. 1103--1114.
    [18]
    A. R. Choudhuri, P. Hubáček, C. Kamath, K. Pietrzak, A. Rosen, and G. N. Rothblum, PPAD-Hardness via Iterated Squaring Modulo a Composite, IACR Cryptology ePrint Archive, https://eprint.iacr.org/2019/667, 2019.
    [19]
    F. Chung, P. Diaconis, and R. Graham, Combinatorics for the east model, Adv. Appl. Math., 27 (2001), pp. 192--206.
    [20]
    A. Condon, The complexity of stochastic games, Inform. Comput., 96 (1992), pp. 203--224.
    [21]
    C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The complexity of computing a Nash equilibrium, SIAM J. Comput., 39 (2009), pp. 195--259.
    [22]
    C. Daskalakis and C. H. Papadimitriou, Continuous local search, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 2011, pp. 790--804.
    [23]
    C. Daskalakis, C. Tzamos, and M. Zampetakis, A converse to Banach's fixed point theorem and its CLS-completeness, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, Los Angeles, 2018, pp. 44--50.
    [24]
    N. Ephraim, C. Freitag, I. Komargodski, and R. Pass, Continuous verifiable delay functions, in Advances in Cryptology---EUROCRYPT 2020, Part III, A. Canteaut and Y. Ishai, eds., Lecture Notes in Comput. Sci. 12107, Springer, New York, 2020, pp. 125--154.
    [25]
    A. Fabrikant, C. H. Papadimitriou, and K. Talwar, The complexity of pure Nash equilibria, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, 2004, pp. 604--612.
    [26]
    J. Fearnley, M. Gairing, M. Mnich, and R. Savani, Reachability switching games, in Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, Prague, 2018, pp. 124:1--124:14.
    [27]
    J. Fearnley, S. Gordon, R. Mehta, and R. Savani, CLS: New Problems and Completeness, CoRR, https://arxiv.org/abs/1702.06017, 2017.
    [28]
    J. Fearnley, S. Gordon, R. Mehta, and R. Savani, Unique end of potential line, in Proceedings of the 46th International Colloquium on Automata, Languages, and Programming, C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, eds., LIPIcs. Leibniz Int. Proc. Inform. 132, Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019, 56.
    [29]
    K. Friedl, G. Ivanyos, M. Santha, and Y. F. Verhoeven, On the black-box complexity of Sperner's lemma, Theory Comput. Syst., 45 (2009), pp. 629--646.
    [30]
    S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candidate indistinguishability obfuscation and functional encryption for all circuits, SIAM J. Comput., 45 (2016), pp. 882--929.
    [31]
    S. Garg, O. Pandey, and A. Srinivasan, Revisiting the cryptographic hardness of finding a Nash equilibrium, in Advances in Cryptology---CRYPTO 2016, Part II, Lecture Notes in Comput. Sci. 9815, Springer, New York, 2016, pp. 579--604.
    [32]
    B. Gärtner, T. D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová, ARRIVAL: Next stop in CLS, in Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, Prague, 2018, pp. 60:1--60:13.
    [33]
    C. Gentry, A. B. Lewko, A. Sahai, and B. Waters, Indistinguishability obfuscation from the multilinear subgroup elimination assumption, in Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science, Berkeley, CA, V. Guruswami, ed., IEEE Computer Society, 2015, pp. 151--170.
    [34]
    M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis, Exponential lower bounds for finding Brouwer fixed points, J. Complexity, 5 (1989), pp. 379--416.
    [35]
    D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy is local search?, J. Comput. System Sci., 37 (1988), pp. 79--100.
    [36]
    Y. T. Kalai, O. Paneth, and L. Yang, Delegation with updatable unambiguous proofs and PPAD-hardness, in Advances in Cryptology---CRYPTO 2020, Santa Barbara, CA, Part III, 2020, pp. 652--673.
    [37]
    Karthik C. S., Did the train reach its destination: The complexity of finding a witness, Inform. Process. Lett., 121 (2017), pp. 17--21.
    [38]
    I. Komargodski and G. Segev, From Minicrypt to Obfustopia via private-key functional encryption, J. Cryptology, 33 (2020), pp. 406--458.
    [39]
    D. C. Llewellyn, C. Tovey, and M. Trick, Local optimization on graphs, Discrete Appl. Math., 23 (1989), pp. 157--178.
    [40]
    A. Lombardi and V. Vaikuntanathan, Fiat-Shamir for repeated squaring with applications to PPAD-hardness and VDFs, in Advances in Cryptology---CRYPTO 2020, Santa Barbara, CA, Part III, 2020, pp. 632--651.
    [41]
    L. Lovász, M. Naor, I. Newman, and A. Wigderson, Search problems in the decision tree model, SIAM J. Discrete Math., 8 (1995), pp. 119--132.
    [42]
    N. Megiddo and C. H. Papadimitriou, On total functions, existence theorems and computational complexity, Theoret. Comput. Sci., 81 (1991), pp. 317--324.
    [43]
    T. Morioka, Classification of Search Problems and Their Definability in Bounded Arithmetic, Electronic Colloquium on Computational Complexity, 2001.
    [44]
    J. F. Nash, Equilibrium points in $n$-person games, Proc. Natl. Acad. Sci. USA, 36 (1950), pp. 48--49.
    [45]
    C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, J. Comput. System Sci., 48 (1994), pp. 498--532.
    [46]
    R. Pass, K. Seth, and S. Telang, Indistinguishability obfuscation from semantically-secure multilinear encodings, in CRYPTO (1), Lecture Notes in Comput. Sci. 8616, Springer, New York, 2014, pp. 500--517.
    [47]
    A. Rosen, G. Segev, and I. Shahaf, Can PPAD hardness be based on standard cryptographic assumptions?, in Proceedings of Theory of Cryptography---15th International Conference, Part II, Baltimore, MD, 2017, pp. 747--776.
    [48]
    R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Internat. J. Game Theory, 2 (1973), pp. 65--67.
    [49]
    A. Rubinstein, Inapproximability of Nash equilibrium, SIAM J. Comput., 47 (2018), pp. 917--959.
    [50]
    M. Santha and M. Szegedy, Quantum and classical query complexities of local search are polynomially related, Algorithmica, 55 (2009), pp. 557--575.
    [51]
    R. Savani and B. Stengel, Hard-to-solve bimatrix games, Econometrica, 74 (2006), pp. 397--429.
    [52]
    A. A. Schäffer and M. Yannakakis, Simple local search problems that are hard to solve, SIAM J. Comput., 20 (1991), pp. 56--87.
    [53]
    L. S. Shapley, Stochastic games, Proc. Natl. Acad. Sci. USA, 39 (1953), pp. 1095--1100.
    [54]
    X. Sun and A. C. Yao, On the quantum query complexity of local search in two and three dimensions, Algorithmica, 55 (2009), pp. 576--600.
    [55]
    D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press, Cambridge, UK, 2011.
    [56]
    S. Zhang, Tight bounds for randomized and quantum local search, SIAM J. Comput., 39 (2009), pp. 948--977.

    Cited By

    View all
    • (2024)Separations in Proof Complexity and TFNPJournal of the ACM10.1145/366375871:4(1-45)Online publication date: 9-May-2024
    • (2024)The Complexity of Computing KKT Solutions of Quadratic ProgramsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649647(892-903)Online publication date: 10-Jun-2024
    • (2022)Further collapses in TFNPProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.33(1-15)Online publication date: 20-Jul-2022
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Computing
    SIAM Journal on Computing  Volume 49, Issue 6
    ISSN:0097-5397
    DOI:10.1137/smjcat.49.6
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2020

    Author Tags

    1. CLS
    2. continuous local search
    3. cryptographic hardness
    4. PLS
    5. PPAD
    6. query complexity
    7. TFNP

    Author Tags

    1. 68Q15
    2. 68Q17

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Separations in Proof Complexity and TFNPJournal of the ACM10.1145/366375871:4(1-45)Online publication date: 9-May-2024
    • (2024)The Complexity of Computing KKT Solutions of Quadratic ProgramsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649647(892-903)Online publication date: 10-Jun-2024
    • (2022)Further collapses in TFNPProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.33(1-15)Online publication date: 20-Jul-2022
    • (2022)The Complexity of Gradient Descent: CLS = PPAD ∩ PLSJournal of the ACM10.1145/356816370:1(1-74)Online publication date: 19-Dec-2022

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media