Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace

Published: 01 January 2021 Publication History
  • Get Citation Alerts
  • Abstract

    Assume that for every derandomization result for logspace algorithms, there is a pseudorandom generator strong enough to nearly recover the derandomization by iterating over all seeds and taking a majority vote. We prove under a precise version of this assumption that ${BPL} \subseteq \bigcap_{\alpha > 0} {DSPACE}(\log^{1 + \alpha} n)$. We strengthen the theorem to an equivalence by considering two generalizations of the concept of a pseudorandom generator against logspace. A targeted pseudorandom generator against logspace takes as input a short uniform random seed and a finite automaton; it outputs a long bitstring that looks random to that particular automaton. A simulation advice generator for logspace stretches a small uniform random seed into a long advice string; the requirement is that there is some logspace algorithm that, given a finite automaton and this advice string, simulates the automaton reading a long uniform random input. We prove that $\bigcap_{\alpha > 0} {promise}-{BPSPACE}(\log^{1 + \alpha} n) = \bigcap_{\alpha > 0} {promise}-{DSPACE}(\log^{1 + \alpha} n)$ if and only if for every targeted pseudorandom generator against logspace, there is a simulation advice generator for logspace with similar parameters. Finally, we observe that in a certain uniform setting (namely, if we only worry about sequences of automata that can be generated in logspace), targeted pseudorandom generators against logspace can be transformed into simulation advice generators with similar parameters.

    References

    [1]
    R. Armoni, On the derandomization of space-bounded computations, in Randomization and Approximation Techniques in Computer Science, M. Luby, J. D. P. Rolim, and M. Serna, eds., Springer, Berlin, 1998, pp. 47--59.
    [2]
    B. Ayd\inl\ioğlu, D. Gutfreund, J. M. Hitchcock, and A. Kawachi, Derandomizing Arthur-Merlin games and approximate counting implies exponential-size lower bounds, Comput. Complexity, 20 (2011), pp. 329--366, https://doi.org/10.1007/s00037-011-0010-8.
    [3]
    B. Ayd\inl\ioğlu and D. van Melkebeek, Nondeterministic circuit lower bounds from mildly derandomizing Arthur-Merlin games, Comput. Complexity, 26 (2017), pp. 79--118, https://doi.org/10.1007/s00037-014-0095-y.
    [4]
    M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudorandom bits, SIAM J. Comput., 13 (1984), pp. 850--864, https://doi.org/10.1137/0213053.
    [5]
    J.-Y. Cai, V. T. Chakaravarthy, and D. van Melkebeek, Time-space tradeoff in derandomizing probabilistic logspace, Theory Comput. Syst., 39 (2006), pp. 189--208, https://doi.org/10.1007/s00224-005-1264-9.
    [6]
    L. Fortnow, Comparing notions of full derandomization, in Proceedings of the 16th Annual Conference on Computational Complexity, CCC '01, 2001, IEEE Computer Society, p. 28.
    [7]
    O. Goldreich, In a world of ${P}={BPP}$, in Studies in Complexity and Cryptography, Lecture Notes in Comput. Sci. 6650, Springer, Berlin, 2011, pp. 191--232, https://doi.org/10.1007/978-3-642-22670-0_20.
    [8]
    O. Goldreich, Two comments on targeted canonical derandomizers, in Electronic Colloquium on Computational Complexity (ECCC), Vol. 18, Weizemann Institute of Science, Rehovot, Israel, 2011, p. 11.
    [9]
    V. Guruswami, C. Umans, and S. Vadhan, Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes, J. ACM, 56 (2009), https://doi.org/10.1145/1538902.1538904.
    [10]
    J. H\aastad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any one-way function, SIAM J. Comput., 28 (1999), pp. 1364--1396, https://doi.org/10.1137/S0097539793244708.
    [11]
    R. Impagliazzo, V. Kabanets, and A. Wigderson, In search of an easy witness: Exponential time vs. probabilistic polynomial time, J. Comput. System Sci., 65 (2002), pp. 672--694, https://doi.org/10.1016/S0022-0000(02)00024-7, http://www.sciencedirect.com/science/article/pii/S0022000002000247.
    [12]
    R. Impagliazzo, N. Nisan, and A. Wigderson, Pseudorandomness for network algorithms, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC '94, ACM, New York, 1994, pp. 356--364, https://doi.org/10.1145/195058.195190.
    [13]
    R. Impagliazzo and A. Wigderson, ${P}={BPP}$ if ${E}$ requires exponential circuits: Derandomizing the XOR lemma, in Proceedings of the 29th Annual Symposium on Theory of Computing, STOC '97, ACM, New York, 1999, pp. 220--229.
    [14]
    R. Impagliazzo and A. Wigderson, Randomness vs time: Derandomization under a uniform assumption, J. Comput. System Sci., 63 (2001), pp. 672--688, https://doi.org/10.1006/jcss.2001.1780, http://www.sciencedirect.com/science/article/pii/S0022000001917805.
    [15]
    V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complexity, 13 (2004), pp. 1--46, https://doi.org/10.1007/s00037-004-0182-6.
    [16]
    D. M. Kane, J. Nelson, and D. P. Woodruff, Revisiting Norm Estimation in Data Streams, preprint, arXiv:0811.3648, 2008.
    [17]
    J. Kinne, D. van Melkebeek, and R. Shaltiel, Pseudorandom generators, typically-correct derandomization, and circuit lower bounds, Comput. Complexity, 21 (2012), pp. 3--61, https://doi.org/10.1007/s00037-011-0019-z.
    [18]
    A. R. Klivans and D. van Melkebeek, Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses, SIAM J. Comput., 31 (2002), pp. 1501--1526, https://doi.org/10.1137/S0097539700389652.
    [19]
    R. E. Ladner and N. A. Lynch, Relativization of questions about log space computability, Math. Systems Theory, 10 (1976), pp. 19--32, https://doi.org/10.1007/BF01683260.
    [20]
    N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica, 12 (1992), pp. 449--461, https://doi.org/10.1007/BF01305237.
    [21]
    N. Nisan, ${RL}\subseteq {\rm SC}$, Comput. Complexity, 4 (1994), pp. 1--11, https://doi.org/10.1007/BF01205052.
    [22]
    N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci., 49 (1994), pp. 149--167, https://doi.org/10.1016/S0022-0000(05)80043-1.
    [23]
    I. C. Oliveira and R. Santhanam, Pseudodeterministic constructions in subexponential time, in Proceedings of the 49th Annual Symposium on Theory of Computing, STOC '17, ACM, New York, 2017, pp. 665--677, https://doi.org/10.1145/3055399.3055500.
    [24]
    R. Raz and O. Reingold, On recycling the randomness of states in space bounded computation, in Proceedings of the 31st Annual Symposium on Theory of Computing, STOC '99, ACM, New York, 1999, pp. 159--168, https://doi.org/10.1145/301250.301294.
    [25]
    O. Reingold, Randomness vs. Memory: Prospects and Barriers, 2010, https://omereingold.files.wordpress.com/2014/10/rlbarriers.pptx.
    [26]
    O. Reingold, L. Trevisan, and S. Vadhan, Pseudorandom walks on regular digraphs and the $RL$ vs. $L$ problem, in Proceedings of the 38th Annual Symposium on Theory of Computing, STOC '06, ACM, New York, 2006, pp. 457--466, https://doi.org/10.1145/1132516.1132583.
    [27]
    M. Saks and S. Zhou, ${BP}_{H}{SPACE}(S)\subseteq{DSPACE}(S^{3/2})$, J. Comput. System Sci., 58 (1999), pp. 376--403, https://doi.org/10.1006/jcss.1998.1616, http://www.sciencedirect.com/science/article/pii/S0022000098916166.
    [28]
    C. Umans, Pseudo-random generators for all hardnesses, J. Comput. System Sci., 67 (2003), pp. 419--440, https://doi.org/10.1016/S0022-0000(03)00046-1, http://www.sciencedirect.com/science/article/pii/S0022000003000461. Special Issue on STOC 2002.
    [29]
    R. Williams, Improving exhaustive search implies superpolynomial lower bounds, SIAM J. Comput., 42 (2013), pp. 1218--1244, https://doi.org/10.1137/10080703X.
    [30]
    C. B. Wilson, A measure of relativized space which is faithful with respect to depth, J. Comput. System Sci., 36 (1988), pp. 303--312, https://doi.org/10.1016/0022-0000(88)90031-1.
    [31]
    A. C. Yao, Theory and application of trapdoor functions, in Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS '82, IEEE, New York, 1982, pp. 80--91.
    [32]
    D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures Algorithms, 11 (1997), pp. 345--367, https://dl.acm.org/doi/10.5555/280032.280035.

    Cited By

    View all
    • (2023)Approximating Iterated Multiplication of Stochastic Matrices in Small SpaceProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585181(35-45)Online publication date: 2-Jun-2023

    Index Terms

    1. Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Information & Contributors

              Information

              Published In

              cover image SIAM Journal on Computing
              SIAM Journal on Computing  Volume 51, Issue 2
              ISSN:0097-5397
              DOI:10.1137/smjcat.51.2
              Issue’s Table of Contents

              Publisher

              Society for Industrial and Applied Mathematics

              United States

              Publication History

              Published: 01 January 2021

              Author Tags

              1. pseudorandom generators
              2. derandomization
              3. space complexity

              Author Tags

              1. 68Q15
              2. 68Q87

              Qualifiers

              • Research-article

              Contributors

              Other Metrics

              Bibliometrics & Citations

              Bibliometrics

              Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0
              Reflects downloads up to 09 Aug 2024

              Other Metrics

              Citations

              Cited By

              View all
              • (2023)Approximating Iterated Multiplication of Stochastic Matrices in Small SpaceProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585181(35-45)Online publication date: 2-Jun-2023

              View Options

              View options

              Get Access

              Login options

              Media

              Figures

              Other

              Tables

              Share

              Share

              Share this Publication link

              Share on social media