Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Regression-Based Complexity Reduction of the Nested Monte Carlo Methods

Published: 01 January 2018 Publication History

Abstract

In this paper we propose a novel dual regression-based approach for pricing American options. This approach reduces the complexity of the nested Monte Carlo method and has an especially simple form for time discretized diffusion processes. We analyze the complexity of the proposed approach in the case of both fixed and increasing numbers of exercise dates. The method is illustrated by several numerical examples.

References

[1]
L. Andersen and M. Broadie, Primal-dual simulation algorithm for pricing multidimensional American options, Management Sci., 50 (2004), pp. 1222--1234.
[2]
D. Belomestny, C. Bender, and J. Schoenmakers, True upper bounds for Bermudan products via non-nested Monte Carlo, Math. Finance, 19 (2009), pp. 53--71.
[3]
D. Belomestny, S. Häfner, T. Nagapetyan, and M. Urusov, Variance Reduction for Discretised Diffusions via Regression, preprint, arXiv:1510.03141v4, 2017.
[4]
D. Belomestny, G. Milstein, and V. Spokoiny, Regression methods in pricing American and Bermudan options using consumption processes, Quant. Finance, 9 (2009), pp. 315--327, https://doi.org/10.1080/14697680802165736.
[5]
D. Belomestny and G. N. Milstein, Monte Carlo evaluation of American options using consumption processes, Int. J. Theor. Appl. Finance, 9 (2006), pp. 455--481.
[6]
D. Belomestny, J. Schoenmakers, and F. Dickmann, Multilevel dual approach for pricing American style derivatives, Finance Stoch., 17 (2013), pp. 717--742.
[7]
N. Chen and P. Glasserman, Additive and multiplicative duals for American option pricing, Finance Stoch., 11 (2007), pp. 153--179.
[8]
E. Clément, D. Lamberton, and P. Protter, An analysis of a least squares regression method for American option pricing, Finance Stoch., 6 (2002), pp. 449--471, https://doi.org/10.1007/s007800200071.
[9]
P. Dupuis and H. Wang, On the convergence from discrete to continuous time in an optimal stopping problem, Ann. Appl. Probab., 15 (2005), pp. 1339--1366.
[10]
P. Glasserman, Monte Carlo Methods in Financial Engineering, Stoch. Model. Appl. Probab. 53, Springer, New York, 2003.
[11]
L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer Ser. Statist., Springer, New York, 2002, https://doi.org/10.1007/b97848.
[12]
M. B. Haugh and L. Kogan, Pricing American options: A duality approach, Oper. Res., 52 (2004), pp. 258--270, https://doi.org/10.1287/opre.1030.0070.
[13]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Stoch. Model. Appl. Probab. 23, Springer, New York, 1992.
[14]
F. A. Longstaff and E. S. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev. Financial Stud., 14 (2001), pp. 113--147.
[15]
G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Sci. Comput., Springer-Verlag, Berlin, 2004, https://doi.org/10.1007/978-3-662-10063-9.
[16]
L. C. G. Rogers, Monte Carlo valuation of American options, Math. Finance, 12 (2002), pp. 271--286, https://doi.org/10.1111/1467-9965.02010.
[17]
J. Schoenmakers, J. Zhang, and J. Huang, Optimal dual martingales, their analysis, and application to new algorithms for Bermudan products, SIAM J. Financial Math., 4 (2013), pp. 86--116, https://doi.org/10.1137/110832513.
[18]
J. N. Tsitsiklis and B. Van Roy, Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives, IEEE Trans. Automat. Control, 44 (1999), pp. 1840--1851.
[19]
J. N. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American-style options, IEEE Trans. Neural Networks, 12 (2001), pp. 694--703.
[20]
D. Z. Zanger, Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing, Finance Stoch., 17 (2013), pp. 503--534.

Cited By

View all
  • (2023)Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation ApproachMethodology and Computing in Applied Probability10.1007/s11009-023-09996-z25:1Online publication date: 27-Jan-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics  Volume 9, Issue 2
EISSN:1945-497X
DOI:10.1137/sjfmbj.9.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2018

Author Tags

  1. Bermudan options
  2. Monte Carlo methods
  3. nested simulations
  4. control variates
  5. regression methods

Author Tags

  1. 65C05
  2. 60H35
  3. 62P05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation ApproachMethodology and Computing in Applied Probability10.1007/s11009-023-09996-z25:1Online publication date: 27-Jan-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media