Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Hidden-Memory Variable-Order Time-Fractional Optimal Control Model: : Analysis and Approximation

Published: 01 January 2021 Publication History

Abstract

We prove the well-posedness and smoothing property of a fractional optimal control model with integral constraints governed by a hidden-memory variable-order Caputo time-fractional diffusion PDE, in which the adjoint equation leads to a different type of variable-order Riemann--Liouville time-fractional diffusion PDE. The L-1 discretization loses its monotonicity due to the impact of hidden memory, which was crucial in the error estimate of the L-1 discretization of constant-order fractional diffusion PDEs. We develop a novel splitting to prove an optimal-order error estimate of the discretization of the optimal control model without any artificial regularity assumption of the true solution. Numerical experiments are performed to substantiate the theoretical findings.

References

[1]
G. Acosta and J. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), pp. 472--495.
[2]
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Elsevier, New York, 2003.
[3]
M. Athans and P. L. Falb, Optimal Control: An introduction to the theory and its applications, Dover, New York, 2006.
[4]
H. Antil, E. Otarola, and A. Salgado, A space-time fractional optimal control problem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), pp. 1295--1328.
[5]
P. Baveye, P. Vandevivere, B. L. Hoyle, P. C. DeLeo, and D. S. de Lozada, Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials, Crit. Rev. Environ. Sci. Tech., 28 (2006), pp. 123--191.
[6]
D. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, Fractional dispersion, Lévy motions, and the MADE tracer tests, Transp. Porous Media, 42 (2001), pp. 211--240.
[7]
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differential Equations, 32 (2007), pp. 1245--1260.
[8]
M. D'Elia, C. Glusa, and E. Otarola, A priori error estimates for the optimal control of the integral fractional Laplacian, SIAM J. Control Optim., 57 (2019), pp. 2775--2798.
[9]
K. Diethelm, N. Ford, A. Freed, and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 743--773.
[10]
R. Du, A. Alikhanov, and Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79 (2020), pp. 2952--2972.
[11]
S. Duo, H. Wang, and Y. Zhang, A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), pp. 231--256.
[12]
P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2002.
[13]
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 1998.
[14]
Z. W. Fang, H. W. Sun, and H. Wang, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations, Comput. Math. Appl., 80 (2020), pp. 1443--1458.
[15]
H. Fu, M. Ng, and H. Wang, A divide-and-conquer fast finite difference method for space-time fractional partial differential equation, Comput. Math. Appl., 73 (2017), pp. 1233--1242.
[16]
H. Fu and H. Wang, A preconditioned fast finite difference method for space-time fractional partial differential equations, Fract. Calc. Appl. Anal., 20 (2017), pp. 88--116.
[17]
L. Gandossi and U. Von Estorff, An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production, Scientific and Technical Research Reports, Joint Research Centre of the European Commission; Publications Office of the European Union, 2015. doi:10.2790/379646.
[18]
G. H. Gao, Z. Z. Sun and H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), pp. 33--50.
[19]
M. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, PA, 2002.
[20]
M. Gunzburger and J. Wang, Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional PDE, SIAM J. Control. Optim., 57 (2019), pp. 241--263.
[21]
K. Ito and K. Kunisch, Semismooth Newton methods for time-optimal control for a class of ODEs, SIAM J. Control Optim., 48 (2010), pp. 3997--4013.
[22]
J. Jia, H. Wang, and X. Zheng, A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis, J Comput. Appl. Math., 388 (2021), 113234.
[23]
J. Jia, X. Zheng, H. Fu, P. Dai, and H. Wang, A fast method for variable-order space-fractional diffusion equations, Numer. Algorithms, 85 (2020), pp. 1519--1540.
[24]
S. Jiang, J. Zhang, Q. Zhang Q, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), pp. 650--678.
[25]
B. Jin, B. Li and Z. Zhou, Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint, IMA J. Numer. Anal., 40 (2020), pp. 377--404.
[26]
R. Ke, M. K. Ng, and H. W. Sun, A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations, J. Comput. Phys., 303 (2015), pp. 203--211.
[27]
Y. Kian, E. Soccorsi and M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), pp. 3855--3881.
[28]
Z. Li, H. Wang, R. Xiao, and S. Yang, A variable-order fractional differential equation model of shape memory polymers, Chaos Solitons Fractals, 102 (2017), pp. 473--485.
[29]
W. Liu and N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), pp. 497--521.
[30]
A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zhenga, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth, and G. E. Karniadakis, What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404 (2020), 109009
[31]
C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dynam., 29 (2002), pp. 57--98.
[32]
C. Lubich, Convolution quadrature and discretized operational calculus, I. Numer. Math., 52 (1988), pp. 129--145.
[33]
W. McLean, Fast summation by interval clustering for an evolution equation with memory, SIAM J. Sci. Comput., 34 (2012), pp. A3039--A3056.
[34]
M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Stud. Math., De Gruyter, Berlin, 2011.
[35]
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1--77.
[36]
G. Mophou, Optimal control of fractional diffusion equation, Comput. Math. Appl., 61 (2011), pp. 68--78.
[37]
P. Neittaanmaki, D. Tiba and M. Dekker, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker, New York, 1994.
[38]
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[39]
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), pp. 426--447.
[40]
S. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), pp. 653--662.
[41]
R. Schumer, D. A. Benson, M. M. Meerschaert and B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), pp. 1--12.
[42]
M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), pp. 1057--1079.
[43]
H. Sun, A. Chang, Y. Zhang, and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22 (2019), pp. 27--59.
[44]
Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193--209.
[45]
N. Sweilam, T. Al-Ajami and R. Hoppe, Numerical solution of some types of fractional optimal control problems, Sci. World. J., 2013 (2013), 306237.
[46]
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math. 1054, Springer-Verlag, New York, 1984.
[47]
H. Wang and X. Zheng, Analysis and numerical solution of a nonlinear variable-order fractional differential equation, Adv. Comput. Math., 45 (2019), pp. 2647--2675.
[48]
H. Wang and X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475 (2019), pp. 1778--1802.
[49]
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopedic implants, Biomaterials, 83 (2016), pp. 127--141.
[50]
F. Zeng, Z. Zhang and G. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations, SIAM J. Sci. Comput., 37 (2015), pp. A2710--A2732.
[51]
Y. Zhang, C. Green, B. Baeumer, Linking aquifer spatial properties and non-Fickian transport in mobile--immobile like alluvial settings, J. Hydrology, 512 (2014), pp. 315--331.
[52]
M. Zhao and H. Wang, Fast finite difference methods for space-time fractional partial differential equations in three space dimensions with nonlocal boundary conditions, Appl. Numer. Math., 145 (2019), pp. 411--428.
[53]
X. Zheng and H. Wang, Wellposedness and regularity of a variable-order space-time fractional diffusion equation, Anal. Appl. (Singap.), 18 (2020), pp. 615--638.
[54]
X. Zheng and H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), pp. 1522--1545, https://doi.org/10.1093/imanum/draa013.
[55]
X. Zheng and H. Wang, Wellposedness and smoothing properties of history-state based variable-order time-fractional diffusion equations, Z. Angew. Math. Phys., 71 (2020), p. 34.
[56]
Z. Zhou and W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), pp. 301--318.

Cited By

View all
  • (2023)Numerical Reconstruction of a Discontinuous Diffusive Coefficient in Variable-Order Time-Fractional SubdiffusionJournal of Scientific Computing10.1007/s10915-023-02237-y96:1Online publication date: 23-May-2023
  • (2022)Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion EquationJournal of Scientific Computing10.1007/s10915-022-01820-z91:2Online publication date: 1-May-2022
  • (2022)Discretization and Analysis of an Optimal Control of a Variable-Order Time-Fractional Diffusion Equation with Pointwise ConstraintsJournal of Scientific Computing10.1007/s10915-022-01795-x91:2Online publication date: 1-May-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization  Volume 59, Issue 3
DOI:10.1137/sjcodc.59.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2021

Author Tags

  1. optimal control
  2. variable-order time-fractional diffusion equation
  3. well-posedness
  4. regularity
  5. finite element method
  6. error estimate

Author Tags

  1. 26A33
  2. 35K20
  3. 49K20
  4. 65M12
  5. 65M60

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Numerical Reconstruction of a Discontinuous Diffusive Coefficient in Variable-Order Time-Fractional SubdiffusionJournal of Scientific Computing10.1007/s10915-023-02237-y96:1Online publication date: 23-May-2023
  • (2022)Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion EquationJournal of Scientific Computing10.1007/s10915-022-01820-z91:2Online publication date: 1-May-2022
  • (2022)Discretization and Analysis of an Optimal Control of a Variable-Order Time-Fractional Diffusion Equation with Pointwise ConstraintsJournal of Scientific Computing10.1007/s10915-022-01795-x91:2Online publication date: 1-May-2022
  • (2022)Numerical approximation and error analysis for Caputo–Hadamard fractional stochastic differential equationsZeitschrift für Angewandte Mathematik und Physik (ZAMP)10.1007/s00033-022-01890-x73:6Online publication date: 10-Nov-2022
  • (2022)Analysis of viscoelastic flow with a generalized memory and its exponential convergence to steady stateZeitschrift für Angewandte Mathematik und Physik (ZAMP)10.1007/s00033-022-01688-x73:2Online publication date: 1-Apr-2022
  • (2021)Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equationsZeitschrift für Angewandte Mathematik und Physik (ZAMP)10.1007/s00033-021-01566-y72:4Online publication date: 1-Aug-2021

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media