Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Numerical Maximization of the p-Laplacian Energy of a Two-Phase Material

Published: 01 January 2021 Publication History

Abstract

For a diffusion problem modeled by the $p$-Laplacian operator, we are interested in obtaining numerically the two-phase material which maximizes the internal energy. We assume that the amount of the best material is limited. In the framework of a relaxed formulation, we present two algorithms, a feasible directions method and an alternating minimization method. We show the convergence for both of them, and we provide an estimate for the error. Since for $p>2$ both methods are only well-defined for a finite-dimensional approximation, we also study the difference between solving the finite-dimensional and the infinite-dimensional problems. Although the error bounds for both methods are similar, numerical experiments show that the alternating minimization method works better than the feasible directions one.

References

[1]
G. Allaire, Shape Optimization by the Homogenization Method, Appl. Math. Sci. 146, Springer-Verlag, Berlin, 2002.
[2]
M. S. Aln\aes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FeniCs Project Version 1.5, Arch. Numer. Softw., 3 (2015), https://doi.org/10.11588/ans.2015.100.20553.
[3]
L. Blank and C. Rupprecht, An extension of the projected gradient method to a Banach space setting with application in structural topology optimization, SIAM J. Control Optim., 55 (2017), pp. 1481--1499.
[4]
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Text Appl. Math. 15, Springer-Verlag, Berlin, 2008.
[5]
J. Casado-Díaz, Some smoothness results for the optimal design of a two-composite material which minimizes the energy, Calc. Var. Partial Differential Equations, 53 (2015), pp. 649--673.
[6]
J. Casado-Díaz, Smoothness properties for the optimal mixture of two isotropic materials: The compliance and eigenvalue problems, SIAM J. Control Optim., 53 (2015), pp. 2319--2349.
[7]
J. Casado-Díaz, C. Conca, and D. Vásquez-Varas, The maximization of the p-Laplacian energy for a two-phase material, SIAM J. Control Optim., 59 (2021), pp. 1497--1519.
[8]
C. Conca, A. Laurain, and R. Mahadevan, Minimization of the ground state for two phase conductors in low contrast regime, SIAM J. Appl. Math., 72 (2012), pp. 1238--1259.
[9]
B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math., 410 (1990), pp. 1--22.
[10]
R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Rech. Opér. Sér. Rouge Anal. Numér., 9 (1975), pp. 41--76.
[11]
S. González-Andrade, A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator, Comput. Optim. Appl., 66 (2017), pp. 123--162.
[12]
J. Goodman, R. V. Kohn, and L. Reyna, Numerical study of a relaxed variational problem from optimal design, Comput. Methods Appl. Mech. Engrg., 57 (1986), pp. 107--127.
[13]
Y. Q. Huang, R. Li, and W. Liu, Preconditioned descent algorithms for p-Laplacian, J. Sci. Comput., 32 (2007), pp. 343--371.
[14]
B. Kawohl, J. Stara, and G. Wittum, Analysis and numerical studies of a problem of shape design, Arch. Ration. Mech. Anal., 114 (1991), pp. 343--363.
[15]
A. Laurain, Global minimizer of the ground state for two phase conductors in low contrast regime, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 362--388.
[16]
A. Logg, Efficient representation of computational meshes, Int. J. Comput. Sci. Eng., 4 (2009), pp. 283--295.
[17]
F. Murat, Un contre-exemple pour le problème du contrôle dans les coefficients, C. R. Acad. Sci. Paris A, 273 (1971), pp. 708--711.
[18]
F. Murat, Théorèmes de non existence pour des problèmes de contrôle dans les coefficients, C. R. Acad. Sci. Paris A, 274 (1972), pp. 395--398.
[19]
F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique, 1977--78, Université d'Alger, multicopied, 34 pp.; English translation, F. Murat and L. Tartar, H-convergence, Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R. V. Kohn, eds., Birkhaüser, Boston, 1998, pp. 21--43.
[20]
F. Murat and L. Tartar, Calcul des variations et homogénéisation, Les méthodes de l'homogénéisation: Théorie et applications en physique, Eyrolles, Paris, 1985, pp. 319--369; English translation, F. Murat and L. Tartar, Calculus of Variations and Homogenization, Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R. V. Kohn, eds., Birkhaüser, Boston, 1998.
[21]
L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer-Verlag, Berlin, 2009.
[22]
A. M. Toader, The convergence of an algorithm in numerical shape optimization, C. R. Acad. Sci. Paris Sér. I Math., 323 (1997), pp. 195--198.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 59, Issue 6
2021
301 pages
ISSN:0036-1429
DOI:10.1137/sjnaam.59.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2021

Author Tags

  1. optimal design
  2. two-phase material
  3. $p$-Laplacian operator
  4. feasible directions method
  5. alternating minimization method

Author Tags

  1. 49M05
  2. 49J20

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media