Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Ising Antiferromagnet and Max Cut on Random Regular Graphs

Published: 01 January 2022 Publication History

Abstract

The Ising antiferromagnet is an important statistical physics model with close connections to the Max Cut problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the Max Cut of random regular graphs predicted by Zdeborová and Boettcher [J. Stat. Mech., 2010 (2010), P02020]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten--Stigum bound.

References

[1]
E. Abbe, Community detection and stochastic block models: Recent developments, J. Mach. Learn. Res., 18 (2017), 177.
[2]
E. Abbe and C. Sandon, Proof of the achievability conjectures for the general stochastic block model, Comm. Pure Appl. Math., 71 (2018), pp. 1334--1406.
[3]
D. Achlioptas and A. Coja-Oghlan, Algorithmic barriers from phase transitions, in Proceedings of the 49th Annual Symposium on Foundations of Computer Science, IEEE, 2008, pp. 793--802.
[4]
D. Achlioptas and C. Moore, The chromatic number of random regular graphs, in Approximation, Randomization, and Combinatorial Optimization, Algorithms and Techniques, Lecture Notes in Comput. Sci. 3122, Springer, Berlin, Heidelberg, 2004, pp. 219--228.
[5]
P. Ayre, A. Coja-Oghlan, and C. Greenhill, Lower Bounds on the Chromatic Number of Random Graphs, preprint, https://arxiv.org/abs/1812.09691, 2018.
[6]
B. Barak and D. Steurer, Sum-of-squares proofs and the quest toward optimal algorithms, in Proceedings of the International Congress of Mathematicians--Seoul 2014, Vol. IV, 2014, pp. 509--533.
[7]
Z. Bartha, N. Sun, and Y. Zhang, Breaking of $1$RSB in random regular MAX-NAE-SAT, in Proceedings of the 60th Annual Symposium on Foundations of Computer Science, IEEE, 2019, pp. 1405--1416.
[8]
M. Bayati, D. Gamarnik, and P. Tetali, Combinatorial approach to the interpolation method and scaling limits in sparse random graphs, Ann. Probab., 41 (2013), pp. 4080--4115.
[9]
A. Bertoni, P. Campadelli, and R. Posenato, An upper bound for the maximum cut mean value, in Graph-Theoretic Concepts in Computer Science (Berlin, 1997), Lecture Notes in Comput. Sci. 1335, Springer, Berlin, 1997, pp. 78--84.
[10]
P. Bleher, J. Ruiz, and V. Zagrebnov, On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice, J. Stat. Phys., 79 (1995), pp. 473--482.
[11]
C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking spectrum of random graphs: Community detection and non-regular Ramanujan graphs, in Proceedings of the 56th Annual Symposium on Foundations of Computer Science, IEEE, 2015, pp. 1347--1357.
[12]
A. Coja-Oghlan, C. Efthymiou, and S. Hetterich, On the chromatic number of random regular graphs, J. Combin. Theory Ser. B, 116 (2016), pp. 367--439.
[13]
A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos, Charting the replica symmetric phase, Comm. Math. Phys., 359 (2018), pp. 603--698.
[14]
A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, N. Müller, K. Panagiotou, and M. Pasch, Inference and Mutual Information on Random Factor Graphs, preprint, https://arxiv.org/abs/2007.07494, 2020.
[15]
A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborová, Information-theoretic thresholds from the cavity method, Adv. Math., 333 (2018), pp. 694--795.
[16]
A. Coja-Oghlan, C. Moore, and V. Sanwalani, MAX k-CUT and approximating the chromatic number of random graphs, Random Structures Algorithms, 28 (2006), pp. 289--322.
[17]
A. Coja-Oghlan and W. Perkins, Spin systems on Bethe lattices, Comm. Math. Phys., 372 (2019), pp. 441--523.
[18]
D. Coppersmith, D. Gamarnik, M. Hajiaghayi, and G. Sorkin, Random MAX SAT, random MAX CUT, and their phase transitions, Random Structures Algorithms, 24 (2004), pp. 502--545.
[19]
E. Csóka, Independent Sets and Cuts in Large-girth Regular Graphs, preprint, https://arxiv.org/abs/1602.02747, 2016.
[20]
E. Csóka, B. Gerencsér, V. Harangi, and B. Virág, Invariant Gaussian processes and independent sets on regular graphs of large girth, Random Structures Algorithms, 47 (2015), pp. 284--303.
[21]
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Phys. Rev. E, 84 (2011), 066106.
[22]
A. Dembo and A. Montanari, Ising models on locally tree-like graphs, Ann. Appl. Probab., 20 (2010), pp. 565--592.
[23]
A. Dembo, A. Montanari, and S. Sen, Extremal cuts of sparse random graphs, Ann. Probab., 45 (2017), pp. 1190--1217.
[24]
A. Dembo, A. Montanari, A. Sly, and N. Sun, The replica symmetric solution for Potts models on $d$-regular graphs, Comm. Math. Phys., 327 (2014), pp. 551--575.
[25]
A. Dembo, A. Montanari, and N. Sun, Factor models on locally tree-like graphs, Ann. Probab., 41 (2013), pp. 4162--4213.
[26]
J. Diaz, N. Do, M. Serna, and N. Wormald, Bounds on the max and min bisection of random cubic and random $4$-regular graphs, Theoret. Comput. Sci., 307 (2003), pp. 531--547.
[27]
J. Diaz, M. Serna, and N. Wormald, Bounds on the bisection width for random $d$-regular graphs, Theoret. Comput. Sci., 382 (2007), pp. 120--130.
[28]
U. Feige, M. Karpinski, and M. Langberg, Improved approximation of Max-Cut on graphs of bounded degree, J. Algorithms, 43 (2002), pp. 201--219.
[29]
S. Franz and M. Leone, Replica bounds for optimization problems and diluted spin systems, J. Stat. Phys., 111 (2003), pp. 535--564.
[30]
S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction, Cambridge University Press, Cambridge, 2018.
[31]
D. Gamarnik and Q. Li, On the max--cut of sparse random graphs, Random Structures Algorithms, 52 (2018), pp. 219--262.
[32]
M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115--1145.
[33]
F. Guerra, Broken replica symmetry bounds in the mean field spin glass model, Comm. Math. Phys., 233 (2003), pp. 1--12.
[34]
F. Guerra and F. Toninelli, The high temperature region of the Viana-Bray diluted spin glass model, J. Statist. Phys., 115 (2004), pp. 531--555.
[35]
J. H\rastad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798--859.
[36]
Y. Higuchi, Remarks on the limiting Gibbs states on a ($d+ 1$)-tree, Publ. Res. Inst. Math. Sci., 13 (1977), pp. 335--348.
[37]
K. Huang, Introduction to Statistical Physics, CRC Press, Boca Raton, FL, 2009.
[38]
V. Kalapala and C. Moore, MAX-CUT on Sparse Random Graphs, Technical Report, TR-CS-2002-24, University of New Mexico, Albuquerque, NM, 2002.
[39]
F. Kardos, D. Kral, and J. Volec, Maximum edge--cuts in cubic graphs with large girth and in random cubic graphs, Random Structures Algorithms, 41 (2012), pp. 506--520.
[40]
H. Kesten and B. Stigum, Additional limit theorem for indecomposable multidimensional Galton-Watson processes, Ann. Math. Statist., 37 (1966), pp. 1463--1481.
[41]
S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the 34th Annual Symposium on Theory of Computing, ACM, 2002, pp. 767--775.
[42]
F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová, Gibbs states and the set of solutions of random constraint satisfaction problems, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 10318--10323.
[43]
W. Lenz, Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern, Phys. Z., 21 (1920), pp. 613--615.
[44]
L. Massoulié, Community detection thresholds and the weak Ramanujan property, in Proceedings of the 46th Annual Symposium on Theory of Computing, ACM, 2014, pp. 694--703.
[45]
M. Mézard and A. Montanari, Information, Physics and Computation, Oxford University Press, Oxford, UK, 2009.
[46]
M. Mézard and G. Parisi, The Bethe lattice spin glass revisited, Eur. Phys. J. B Condens. Matter Phys., 20 (2001), pp. 217--233.
[47]
M. Mézard and G. Parisi, The cavity method at zero temperature, J. Statist. Phys., 111 (2003), pp. 1--34.
[48]
A. Montanari and S. Sen, Semidefinite programs on sparse random graphs and their application to community detection, in Proceedings of the 48th Annual Symposium on Theory of Computing, ACM, 2016, pp. 814--827.
[49]
C. Moore, The Computer Science and Physics of Community Detection: Landscapes, Phase Transitions, and Hardness, preprint, https://arxiv.org/abs/1702.00467, 2017.
[50]
E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model, Probab. Theory Related Fields, 162 (2015), pp. 431--461.
[51]
E. Mossel, J. Neeman, and A. Sly, Consistency thresholds for binary symmetric block models, Electron. J. Probab., 21 (2016), pp. 1--24.
[52]
E. Mossel, J. Neeman, and A. Sly, Belief propagation, robust reconstruction and optimal recovery of block models, Ann. Appl. Probab., 26 (2016), pp. 2211--2256.
[53]
E. Mossel, J. Neeman, and A. Sly, A proof of the block model threshold conjecture, Combinatorica, 38 (2018), pp. 665--708.
[54]
D. Panchenko, The Parisi ultrametricity conjecture, Ann. of Math. (2), (2013), pp. 383--393.
[55]
D. Panchenko, The Sherrington-Kirkpatrick Model, Springer, New York, 2013.
[56]
D. Panchenko, Spin glass models from the point of view of spin distributions, Ann. Probab., 41 (2013), pp. 1315--1361.
[57]
D. Panchenko and M. Talagrand, Bounds for diluted mean-fields spin glass models, Probab. Theory Relat. Fields, 130 (2004), pp. 319--336.
[58]
G. Parisi, A sequence of approximated solutions to the SK model for spin glasses, J. Phys. A: Math. Gen., 13 (1980), L115.
[59]
F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová, Typology of phase transitions in Bayesian inference problems, Phys. Rev. E, 99 (2019), 042109.
[60]
A. Sly, N. Sun, and Y. Zhang, The number of solutions for random regular NAE-SAT, in Proceedings of the 57th Annual Symposium on Theory of Computing, ACM, 2016, pp. 724--731.
[61]
G. Sorkin, Extremal Cuts in Random Cubic Graphs, manuscript, 2019.
[62]
M. Talagrand, The Parisi formula, Ann. of Math. (2), 163 (2006), pp. 221--263.
[63]
L. Zdeborová and S. Boettcher, A conjecture on the maximum cut and bisection width in random regular graphs, J. Stat. Mech., 2010 (2010), P02020.

Cited By

View all
  • (2023)Optimizing solution-samplers for combinatorial problemsProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666741(14035-14069)Online publication date: 10-Dec-2023

Index Terms

  1. The Ising Antiferromagnet and Max Cut on Random Regular Graphs
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image SIAM Journal on Discrete Mathematics
            SIAM Journal on Discrete Mathematics  Volume 36, Issue 2
            Jun 2022
            612 pages
            ISSN:0895-4801
            DOI:10.1137/sjdmec.36.2
            Issue’s Table of Contents

            Publisher

            Society for Industrial and Applied Mathematics

            United States

            Publication History

            Published: 01 January 2022

            Author Tags

            1. Ising antiferromagnet
            2. Max Cut
            3. random regular graphs
            4. phase transition
            5. Kesten--Stigum bound

            Author Tag

            1. 05C80

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 28 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Optimizing solution-samplers for combinatorial problemsProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666741(14035-14069)Online publication date: 10-Dec-2023

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media