Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A High-Order Numerical Method for BSPDEs with Applications to Mathematical Finance

Published: 01 January 2022 Publication History

Abstract

In this paper, we propose a local discontinuous Galerkin (LDG) method for backward stochastic partial differential equations (BSPDEs), which is a high-order numerical scheme. We prove the $L^2$-stability of the numerical scheme. For the superparabolic BSPDEs, the optimal error estimates are obtained for Cartesian meshes with $Q^k$ elements, and the suboptimal error estimates are derived for triangular meshes with $P^k$ elements. We also prove the suboptimal error estimates for the degenerate BSPDEs. Numerical examples in one and two space dimensions are given to display the performance of the LDG method. As an application in mathematical finance, the numerical scheme is applied to approximate the hedging price of a contingent claim and the corresponding optimal hedging strategy.

References

[1]
V. Barbu, A. Răşcanu, and G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations, Appl. Math. Optim., 47 (2003), pp. 97--120.
[2]
F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), pp. 267--279.
[3]
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898719208. [Unabridged republication of the work first published by North-Holland, Amsterdam, New York, Oxford, 1978.]
[4]
B. Cockburn, S. Hou, and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp., 54 (1990), pp. 545--581.
[5]
B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), pp. 264--285, https://doi.org/10.1137/S0036142900371544.
[6]
B. Cockburn, S. Y. Lin, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, J. Comput. Phys., 84 (1989), pp. 90--113.
[7]
B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp., 52 (1989), pp. 411--435.
[8]
B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440--2463, https://doi.org/10.1137/S0036142997316712.
[9]
B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199--224.
[10]
K. Du and Q. Meng, A revisit to $W^n_2$-theory of super-parabolic backward stochastic partial differential equations in $\Bbb R^d$, Stochastic Process. Appl., 120 (2010), pp. 1996--2015.
[11]
K. Du, S. Tang, and Q. Zhang, $W^{m,p}$-solution $(p\ge 2)$ of linear degenerate backward stochastic partial differential equations in the whole space, J. Differential Equations, 254 (2013), pp. 2877--2904.
[12]
N. El Karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), pp. 1--71.
[13]
N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic PDEs, SIAM J. Control Optim., 48 (2009), pp. 481--520, https://doi.org/10.1137/070686998.
[14]
S. W. He, J. G. Wang, and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, 1992.
[15]
Y. Hu, J. Ma, and J. Yong, On semi-linear degenerate backward stochastic partial differential equations, Probab. Theory Related Fields, 123 (2002), pp. 381--411.
[16]
P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89--123.
[17]
Y. Li, C.-W. Shu, and S. Tang, A discontinuous Galerkin method for stochastic conservation laws, SIAM J. Sci. Comput., 42 (2020), pp. A54--A86, https://doi.org/10.1137/19M125710X.
[18]
Y. Li, C.-W. Shu, and S. Tang, An ultra-weak discontinuous Galerkin method with implicit-explicit time-marching for generalized stochastic KdV equations, J. Sci. Comput., 82 (2020), 61.
[19]
Y. Li, C.-W. Shu, and S. Tang, A local discontinuous Galerkin method for nonlinear parabolic SPDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. S187--S223.
[20]
Y. Li and S. Tang, Approximation of backward stochastic partial differential equations by a splitting-up method, J. Math. Anal. Appl., 493 (2021), 124518.
[21]
J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications, Stochastic Process. Appl., 70 (1997), pp. 59--84.
[22]
P. E. Protter, Stochastic Integration and Differential Equations, 2nd ed., Appl. Math. (N.Y.) 21 [continued as Stoch. Model. Appl. Probab.], Springer-Verlag, Berlin, 2004.
[23]
S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations, SIAM J. Control Optim., 36 (1998), pp. 1596--1617, https://doi.org/10.1137/S0363012996313100.
[24]
S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., 48 (2009), pp. 2191--2216, https://doi.org/10.1137/050641508.
[25]
J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40 (2002), pp. 769--791, https://doi.org/10.1137/S0036142901390378.
[26]
X. Yang and W. Zhao, Finite element methods for nonlinear backward stochastic partial differential equations and their error estimates, Adv. Appl. Math. Mech., 12 (2020), pp. 1457--1480.
[27]
X. Y. Zhou, A duality analysis on stochastic partial differential equations, J. Funct. Anal., 103 (1992), pp. 275--293.
[28]
X. Y. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations, SIAM J. Control Optim., 31 (1993), pp. 1462--1478, https://doi.org/10.1137/0331068.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics  Volume 13, Issue 1
EISSN:1945-497X
DOI:10.1137/sjfmbj.13.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. local discontinuous Galerkin method
  2. backward stochastic partial differential equations
  3. stability analysis
  4. error estimates
  5. hedging contingent claims
  6. stochastic Black--Scholes formula

Author Tags

  1. 65C30
  2. 60H35
  3. 90A09

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media