Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An Adaptive Finite Element DtN Method for the Elastic Wave Scattering Problem in Three Dimensions

Published: 01 January 2021 Publication History

Abstract

Consider the elastic scattering of an incident wave by a rigid obstacle in three dimensions, which is formulated as an exterior problem for the Navier equation. By constructing a Dirichlet-to-Neumann (DtN) operator and introducing a transparent boundary condition, the scattering problem is reduced equivalently to a boundary value problem in a bounded domain. The discrete problem with the truncated DtN operator is solved by using the a posteriori error estimate based adaptive finite element method. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to converge exponentially with respect to the truncation parameter. Moreover, the generalized Woodbury matrix identity is utilized to solve the resulting linear system efficiently. Numerical experiments are presented to demonstrate the superior performance of the proposed method.

References

[1]
I. Babuška and A. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. Aziz, ed., Academic Press, New York, 1972, pp. 1--359.
[2]
G. Bao, G. Hu, J. Sun, and T. Yin, Direct and inverse elastic scattering from anisotropic media, J. Math. Pures Appl., 117 (2018), pp. 263--301.
[3]
G. Bao, M. Zhang, B. Hu, and P. Li, An adaptive finite element DtN method for the three-dimensional acoustic scattering problem, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), pp. 61--79.
[4]
G. Bao, M. Zhang, X. Jiang, P. Li, and X. Yuan, An Adaptive Finite Element DtN Method for the Electromagnetic Scattering Problem, preprint.
[5]
A. Bayliss and E. Turkel, Radiation boundary conditions for numerical simulation of waves, Comm. Pure Appl. Math., 33 (1980), pp. 707--725.
[6]
J. H. Bramble, J. E. Pasciak, and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math. Comp., 79 (2010), pp. 2079--2101.
[7]
Z. Chen, X. Xiang, and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math. Comp., 85 (2016), pp. 2687--2714.
[8]
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Stud. Math. Appl. 20, North-Holland, Amsterdam, 1988.
[9]
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.
[10]
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998.
[11]
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), pp. 629--651.
[12]
A. Fournier, Exact calculation of Fourier series in nonconforming spectral-element methods, J. Comput. Phys., 215 (2006), pp. 1--5.
[13]
G. K. Gächter and M. J. Grote, Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, 37 (2003), pp. 293--311.
[14]
D. Givoli and J. B. Keller, Non-reflecting boundary conditions for elastic waves, Wave Motion, 12 (1990), pp. 261--279.
[15]
M. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), pp. 231--243.
[16]
M. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), pp. 630--650.
[17]
T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, in Acta Numerica 1999, Acta Numer. 8, Cambridge University Press, Cambridge, UK, 1999, pp. 47--106.
[18]
F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), pp. 251--265.
[19]
G. C. Hsiao, N. Nigam, J. E. Pasiak, and L. Xu, Error analysis of the DtN-FEM for the scattering problem in acoustic via Fourier analysis, J. Comput. Appl. Math., 235 (2011), pp. 4949--4965.
[20]
G. Hu, A. Rathsfeld, and T. Yin, Finite element method to fluid-solid interaction problems with unbounded periodic interfaces, Numer. Methods Partial Differ. Equations, 32 (2016), pp. 5--35.
[21]
X. Jiang, P. Li, J. Lv, and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), pp. 936--956.
[22]
X. Jiang, P. Li, J. Lv, Z. Wang, H. Wu, and W. Zheng, An adaptive edge finite element DtN method for Maxwell's equations in biperiodic structures, IMA J. Numer. Anal., (2021), drab052, https://doi.org/10.1093/imanum/drab052.
[23]
X. Jiang, P. Li, and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), pp. 1277--1244.
[24]
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon Press, Oxford, UK, 1986.
[25]
M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal., 23 (1986), pp. 562--580, https://doi.org/10.1137/0723036.
[26]
P. Li, Y. Wang, Z. Wang, and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Problems, 32 (2016), 115018.
[27]
P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl. Imaging, 13 (2019), pp. 545--573.
[28]
P. Li and X. Yuan, Convergence of an Adaptive Finite Element DtN Method for the Elastic Wave Scattering Problem, preprint, https://arxiv.org/abs/1903.03606, 2019.
[29]
Y. Li, W. Zheng, and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), pp. 530--560.
[30]
L. Ma, J. Shen, L. Wang, and Z. Yang, Wavenumber explicit analysis for time-harmonic Maxwell equations in a spherical shell and spectral approximation, IMA J. Numer. Anal., 38 (2018), pp. 810--851.
[31]
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, Oxford, UK, 2003.
[32]
J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001.
[33]
A. H. Schatz, An observation concerning Ritz--Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959--962.
[34]
B. Wang, L. Wang, and Z. Xie, Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids, Adv. Comput. Math., 44 (2018), pp. 951--985.
[35]
Z. Wang, G. Bao, J. Li, P. Li, and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), pp. 1585--1607, https://doi.org/10.1137/140969907.
[36]
L. Xu and T. Yin, Analysis of the Fourier series Dirichlet-to-Neumann boundary condition of the Helmholtz equation and its application to finite element methods, Numer. Math., 147 (2021), pp. 967--996.
[37]
Z. Yang, L. Wang, Z. Rong, B. Wang, and B. Zhang, Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics, Comput. Methods Appl. Mech. Engrg.,301 (2016), pp. 137--163.
[38]
X. Yuan, G. Bao, and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), pp. 316--345.

Cited By

View all
  • (2024)An adaptive finite element DtN method for the acoustic-elastic interaction problemAdvances in Computational Mathematics10.1007/s10444-024-10160-550:4Online publication date: 8-Jul-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 59, Issue 6
2021
301 pages
ISSN:0036-1429
DOI:10.1137/sjnaam.59.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2021

Author Tags

  1. elastic wave equation
  2. obstacle scattering problem
  3. Dirichlet-to-Neumann operator
  4. transparent boundary condition
  5. adaptive finite element method
  6. a posteriori error estimate

Author Tags

  1. 65N30
  2. 65N12
  3. 78A45

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An adaptive finite element DtN method for the acoustic-elastic interaction problemAdvances in Computational Mathematics10.1007/s10444-024-10160-550:4Online publication date: 8-Jul-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media