Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Exploiting $c$-Closure in Kernelization Algorithms for Graph Problems

Published: 01 January 2022 Publication History

Abstract

A graph is $c$-closed if every pair of vertices with at least $c$ common neighbors is adjacent. The $c$-closure of a graph $G$ is the smallest number $c$ such that $G$ is $c$-closed. Fox et al. [SIAM J. Comput., 49 (2020), pp. 448--464] defined $c$-closure and investigated it in the context of clique enumeration. We show that $c$-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size $k^{\mathcal{O}(c)}$, that Induced Matching admits a kernel with $\mathcal{O}(c^7 k^{8})$ vertices, and that Irredundant Set admits a kernel with $\mathcal{O}(c^{5/2} k^3)$ vertices. As we show, our kernelizations exploit the fact that $c$-closed graphs have polynomially bounded Ramsey numbers.

References

[1]
F. N. Abu-Khzam, M. R. Fellows, M. A. Langston, and W. H. Suters, Crown structures for vertex cover kernelization, Theory Comput. Syst., 41 (2007), pp. 411--430.
[2]
V. E. Alekseev, D. V. Korobitsyn, and V. V. Lozin, Boundary classes of graphs for the dominating set problem, Discrete Math., 285 (2004), pp. 1--6.
[3]
N. Alon and S. Gutner, Linear time algorithms for finding a dominating set of fixed size in degenerated graphs, Algorithmica, 54 (2009), pp. 544--556.
[4]
R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted vertex cover problem, in Proceedings of the 9th International Workshop on Graph-Theoretic Concepts in Computer Science (WG '83), Universitätsverlag Rudolf Trauner, Linz, 1983, pp. 17--28.
[5]
B. Behera, E. Husić, S. Jain, T. Roughgarden, and C. Seshadhri, FPT algorithms for finding near-cliques in c-closed graphs, in Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS '22), LIPIcs. Leibniz Int. Proc. Inform. 215, Schloss Dagstuhl. Leibniz-Zent. Inform., 2022, 17.
[6]
L. Cai, Parameterized complexity of cardinality constrained optimization problems, Comput. J., 51 (2008), pp. 102--121.
[7]
J. Chen, I. A. Kanj, and W. Jia, Vertex cover: Further observations and further improvements, J. Algorithms, 41 (2001), pp. 280--301.
[8]
M. Chlebík and J. Chlebíková, Crown reductions for the minimum weighted vertex cover problem, Discrete Appl. Math., 156 (2008), pp. 292--312.
[9]
B. Chor, M. Fellows, and D. W. Juedes, Linear kernels in linear time, or how to save $k$ colors in $O(n^2)$ steps, in Proceedings of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG '04), Lecture Notes in Comput. Sci. 3353, Springer, 2004, pp. 257--269.
[10]
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.
[11]
M. Cygan, F. Grandoni, and D. Hermelin, Tight kernel bounds for problems on graphs with small degeneracy, ACM Trans. Algorithms, 13 (2017), 43.
[12]
K. Dabrowski, M. Demange, and V. V. Lozin, New results on maximum induced matchings in bipartite graphs and beyond, Theoret. Comput. Sci., 478 (2013), pp. 33--40.
[13]
H. Dell and D. Marx, Kernelization of packing problems, in Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2012, pp. 68--81, https://doi.org/10.1137/1.9781611973099.6.
[14]
H. Dell and D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, J. ACM, 61 (2014), 23.
[15]
R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts Comput. Sci., Springer, 2013.
[16]
R. G. Downey, M. R. Fellows, and V. Raman, The complexity of irredundant sets parameterized by size, Discrete Appl. Math., 100 (2000), pp. 155--167.
[17]
P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292--294.
[18]
R. Erman, L. Kowalik, M. Krnc, and T. Waleń, Improved induced matchings in sparse graphs, Discrete Appl. Math., 158 (2010), pp. 1994--2003.
[19]
J. Fox, T. Roughgarden, C. Seshadhri, F. Wei, and N. Wein, Finding cliques in social networks: A new distribution-free model, SIAM J. Comput., 49 (2020), pp. 448--464, https://doi.org/10.1137/18M1210459.
[20]
S. Garg and G. Philip, Raising the bar for vertex cover: Fixed-parameter tractability above a higher guarantee, in Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2016, pp. 1152--1166, https://doi.org/10.1137/1.9781611974331.ch80.
[21]
P. A. Golovach and Y. Villanger, Parameterized complexity for domination problems on degenerate graphs, in Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in Computer Science (WG '08), Lecture Notes in Comput. Sci. 5344, Springer, 2008, pp. 195--205.
[22]
D. Hermelin and X. Wu, Weak compositions and their applications to polynomial lower bounds for kernelization, in Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2012, pp. 104--113, https://doi.org/10.1137/1.9781611973099.9.
[23]
R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. System Sci., 63 (2001), pp. 512--530.
[24]
S. Jukna, Extremal Combinatorics: With Applications in Computer Science, 2nd ed., Texts Theoret. Comput. Sci. EATCS Ser., Springer, 2011.
[25]
L. Kanesh, J. Madathil, S. Roy, A. Sahu, and S. Saurabh, Further exploiting c-closure for FPT algorithms and kernels for domination problems, in Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science (STACS '22), LIPIcs. Leibniz Int. Proc. Inform. 219, Schloss Dagstuhl. Leibniz-Zent. Inform., 2022, 39.
[26]
I. A. Kanj, M. J. Pelsmajer, M. Schaefer, and G. Xia, On the induced matching problem, J. Comput. Syst. Sci., 77 (2011), pp. 1058--1070.
[27]
T. Koana, C. Komusiewicz, A. Nichterlein, and F. Sommer, Covering many (or few) edges with $k$ vertices in sparse graphs, in Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science (STACS '22), LIPIcs. Leibniz Int. Proc. Inform. 219, Schloss Dagstuhl. Leibniz-Zent. Inform., 2022, 42.
[28]
T. Koana, C. Komusiewicz, and F. Sommer, Computing dense and sparse subgraphs of weakly closed graphs, in Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC '20), LIPIcs. Leibniz Int. Proc. Inform. 181, Schloss Dagstuhl. Leibniz-Zent. Inform., 2020, 20.
[29]
T. Koana, C. Komusiewicz, and F. Sommer, Exploiting $c$-closure in kernelization algorithms for graph problems, in Proceedings of the 28th Annual European Symposium on Algorithms (ESA '20), LIPIcs. Leibniz Int. Proc. Inform. 173, Schloss Dagstuhl Leibniz-Zent. Inform., 2020, 65.
[30]
T. Koana, C. Komusiewicz, and F. Sommer, Essentially tight kernels for (weakly) closed graphs, in Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC '21), LIPIcs. Leibniz Int. Proc. Inform. 212, Schloss Dagstuhl Leibniz-Zent. Inform., 2021, 35.
[31]
T. Koana and A. Nichterlein, Detecting and enumerating small induced subgraphs in c-closed graphs, Discrete Appl. Math., 302 (2021), pp. 198--207.
[32]
C. Komusiewicz and M. Sorge, An algorithmic framework for fixed-cardinality optimization in sparse graphs applied to dense subgraph problems, Discrete Appl. Math., 193 (2015), pp. 145--161.
[33]
D. Lokshtanov, D. Marx, and S. Saurabh, Slightly superexponential parameterized problems, SIAM J. Comput., 47 (2018), pp. 675--702, https://doi.org/10.1137/16M1104834.
[34]
D. Lokshtanov and V. Surianarayanan, Dominating set in weakly closed graphs is fixed parameter tractable, in Proceedings of the 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS '21), LIPIcs. Leibniz Int. Proc. Inform. 213, Schloss Dagstuhl Leibniz-Zent. Inform., 2021, 29.
[35]
H. Moser and S. Sikdar, The parameterized complexity of the induced matching problem, Discrete Appl. Math., 157 (2009), pp. 715--727.
[36]
H. Moser and D. M. Thilikos, Parameterized complexity of finding regular induced subgraphs, J. Discrete Algorithms, 7 (2009), pp. 181--190.
[37]
G. L. Nemhauser and L. E. Trotter, Vertex packings: Structural properties and algorithms, Math. Programming, 8 (1975), pp. 232--248.
[38]
G. Philip, V. Raman, and S. Sikdar, Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond, ACM Trans. Algorithms, 9 (2012), 11.
[39]
V. Raman and S. Saurabh, Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles, Algorithmica, 52 (2008), pp. 203--225.
[40]
J. A. Telle and Y. Villanger, FPT algorithms for domination in biclique-free graphs, in Proceedings of the 20th Annual European Symposium on Algorithms (ESA '12), Lecture Notes in Comput. Sci. 7501, Springer, 2012, pp. 802--812.

Cited By

View all
  • (2023)Identifying and eliminating majority illusion in social networksProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i4.25634(5062-5069)Online publication date: 7-Feb-2023
  • (2023)Computing Dense and Sparse Subgraphs of Weakly Closed GraphsAlgorithmica10.1007/s00453-022-01090-z85:7(2156-2187)Online publication date: 1-Jul-2023
  • (2023)Essentially Tight Kernels for (Weakly) Closed GraphsAlgorithmica10.1007/s00453-022-01088-785:6(1706-1735)Online publication date: 1-Jun-2023

Index Terms

  1. Exploiting $c$-Closure in Kernelization Algorithms for Graph Problems
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image SIAM Journal on Discrete Mathematics
          SIAM Journal on Discrete Mathematics  Volume 36, Issue 4
          DOI:10.1137/sjdmec.36.4
          Issue’s Table of Contents

          Publisher

          Society for Industrial and Applied Mathematics

          United States

          Publication History

          Published: 01 January 2022

          Author Tags

          1. fixed-parameter tractability
          2. kernelization
          3. $c$-closure
          4. dominating set
          5. induced matching
          6. irredundant set
          7. Ramsey numbers

          Author Tags

          1. 05C85
          2. 68Q17
          3. 68Q25
          4. 68Q27
          5. 68R10

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 04 Oct 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Identifying and eliminating majority illusion in social networksProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i4.25634(5062-5069)Online publication date: 7-Feb-2023
          • (2023)Computing Dense and Sparse Subgraphs of Weakly Closed GraphsAlgorithmica10.1007/s00453-022-01090-z85:7(2156-2187)Online publication date: 1-Jul-2023
          • (2023)Essentially Tight Kernels for (Weakly) Closed GraphsAlgorithmica10.1007/s00453-022-01088-785:6(1706-1735)Online publication date: 1-Jun-2023

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media