Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators

Published: 01 January 1998 Publication History

Abstract

Generalized Gaussian quadratures appear to have been introduced by Markov late in the last century and have been studied in great detail as a part of modern analysis. They have not been widely used as a computational tool, in part due to an absence of effective numerical schemes for their construction. Recently, a numerical scheme for the design of such quadratures was introduced by Ma et al.; numerical results presented in their paper indicate that such quadratures dramatically reduce the computational cost of the evaluation of integrals under certain conditions. In this paper, we modify their approach, improving the stability of the scheme and extending its range of applicability. The performance of the method is illustrated with several numerical examples.

References

[1]
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, National Bureau of Standards, Washington, DC, 1964.
[2]
F. Gantmaher, M. Krei˘n, Oscillyacionye matricy i yadra i malye kolebaniya mehani\v ceskih sistem, Gosudarstv. Isdat. Tehn.‐Teor. Lit., Moscow‐Leningrad, 1950, 359–0, 2d ed
[3]
G. H. Golub and C. H. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1983.
[4]
Leslie Greengard, Vladimir Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer., Vol. 6, Cambridge Univ. Press, Cambridge, 1997, 229–269
[5]
Norman Yarvin, Vladimir Rokhlin, An improved fast multipole algorithm for potential fields on the line, SIAM J. Numer. Anal., 36 (1999), 629–666
[6]
T. Kirichenko, An algorithm for the fast Hankel transform, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint, (1986), 12–0
[7]
Samuel Karlin, The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc., 113 (1964), 1–17
[8]
S. Karlin and W. J. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, John Wiley (Interscience), New York, 1966.
[9]
M. G. Krein, The Ideas of P. L. Chebyshev and A. A. Markov in the Theory of Limiting Values of Integrals, Amer. Math. Soc. Transl. 2, AMS, Providence, RI, 1959, pp. 1–122.
[10]
J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J. Numer. Anal., 33 (1996), 971–996
[11]
A. A. Markov, On the limiting values of integrals in connection with interpolation, Zap. Imp. Akad. Nauk. Fiz.‐Mat. Otd. (8) 6 (1898), no. 5 (in Russian); pp. 146–230 of [12].
[12]
A. Markov, Izbrannye Trudy po Teorii Nepreryvnyh Drobei˘ i Teorii Funkcii˘ Naimenee Uklonyayuščihsya ot Nulya, OGIZ, Moscow‐Leningrad,], 1948, 411–0
[13]
Michael Reed, Barry Simon, Methods of modern mathematical physics. I, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1980xv+400, Functional analysis
[14]
Jacques Rappaz, Marco Picasso, Introduction à l’analyse numérique, Mathématiques. [Mathematics], Presses Polytechniques et Universitaires Romandes, 1998x+256

Cited By

View all

Index Terms

  1. Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Scientific Computing
        SIAM Journal on Scientific Computing  Volume 20, Issue 2
        1998
        387 pages

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 1998

        Author Tags

        1. 65D32
        2. 47G10

        Author Tags

        1. quadratures
        2. singular value decompositions
        3. Chebyshev systems
        4. fast algorithms

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 19 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Compressing the memory variables in constant-Q viscoelastic wave propagation via an improved sum-of-exponentials approximationJournal of Computational Physics10.1016/j.jcp.2024.113326518:COnline publication date: 1-Dec-2024
        • (2023)A hybrid stochastic interpolation and compression method for kernel matricesJournal of Computational Physics10.1016/j.jcp.2023.112491494:COnline publication date: 1-Dec-2023
        • (2023)Quadrature by Two Expansions for Evaluating Helmholtz Layer PotentialsJournal of Scientific Computing10.1007/s10915-023-02222-595:3Online publication date: 15-May-2023
        • (2022)Efficient reduced-rank methods for Gaussian processes with eigenfunction expansionsStatistics and Computing10.1007/s11222-022-10124-z32:5Online publication date: 1-Oct-2022
        • (2022)Solution of ill-posed problems with ChebfunNumerical Algorithms10.1007/s11075-022-01390-z92:4(2341-2364)Online publication date: 12-Sep-2022
        • (2022)All-at-once method for variable-order time fractional diffusion equationsNumerical Algorithms10.1007/s11075-021-01178-790:1(31-57)Online publication date: 1-May-2022
        • (2022)Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent ExpansionBIT10.1007/s10543-017-0689-258:2(423-456)Online publication date: 11-Mar-2022
        • (2020)On the accurate evaluation of unsteady Stokes layer potentials in moving two-dimensional geometriesAdvances in Computational Mathematics10.1007/s10444-020-09760-846:2Online publication date: 27-Feb-2020
        • (2019)An FFT-accelerated direct solver for electromagnetic scattering from penetrable axisymmetric objectsJournal of Computational Physics10.1016/j.jcp.2019.04.005390:C(152-174)Online publication date: 1-Aug-2019
        • (2018)A fast algorithm with error bounds for Quadrature by ExpansionJournal of Computational Physics10.1016/j.jcp.2018.05.006374:C(135-162)Online publication date: 1-Dec-2018
        • Show More Cited By

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media