Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1031171.1031254acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
Article

Computing consistent query answers using conflict hypergraphs

Published: 13 November 2004 Publication History

Abstract

A consistent query answer in a possibly inconsistent database is an answer which is true in every (minimal) repair of the database. We present here a practical framework for computing consistent query answers for large, possibly inconsistent relational databases. We consider relational algebra queries without projection, and denial constraints. Because our framework handles union queries, we can effectively (and efficiently) extract indefinite disjunctive information from an inconsistent database. We describe a number of novel optimization techniques applicable in this context and summarize experimental results that validate our approach.

References

[1]
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.]]
[2]
M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent Databases. In ACM Symposium on Principles of Database Systems (PODS), pages 68--79, 1999.]]
[3]
M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query Answering in Inconsistent Databases. Theory and Practice of Logic Programming, 3(4--5):393--424, 2003.]]
[4]
M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science, 296(3):405--434, 2003.]]
[5]
M. Arenas, L. Bertossi, and M. Kifer. Applications of Annotated Predicate Calculus to Querying Inconsistent Databases. In International Conference on Computational Logic, pages 926--941. Springer-Verlag, LNCS 1861, 2000.]]
[6]
P. Barcelo and L. Bertossi. Logic Programs for Querying Inconsistent Databases. In International Symposium on Practical Aspects of Declarative Languages (PADL), pages 208--222. Springer-Verlag, LNCS 2562, 2003.]]
[7]
L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In J. Chomicki, R. van der Meyden, and G. Snake, editors, Logics for Emerging Applications of Databases, pages 43--83. Springer-Verlag, 2003.]]
[8]
L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent Answers from Integrated Data Sources. In International Conference on Flexible Query Answering Systems (FQAS), pages 71--85, Copenhagen, Denmark, October 2002. Springer-Verlag.]]
[9]
L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data Integration Systems. In International Joint Conference on Artificial Intelligence (IJCAI), pages 10--15, 2003.]]
[10]
F. Bry. Query Answering in Information Systems with Integrity Constraints. In IFIP WG 11.5 Working Conference on Integrity and Control in Information Systems, pages 113--130. Chapman & Hall, 1997.]]
[11]
A. Cali, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query Answering over Inconsistent and Incomplete Databases. In ACM Symposium on Principles of Database Systems (PODS), pages 260--271, 2003.]]
[12]
A. Celle and L. Bertossi. Querying Inconsistent Databases: Algorithms and Implementation. In International Conference on Computational Logic, pages 942--956. Springer-Verlag, LNCS 1861, 2000.]]
[13]
J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using Tuple Deletions. Information and Computation, 2004. To appear. Earlier version: Technical Report cs.DB/0212004, arXiv.org e-Print archive.]]
[14]
T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving in DLV. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79--103. Kluwer, 2000.]]
[15]
T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient Evaluation of Logic Programs for Querying Data Integration Systems. In International Conference on Logic Programming (ICLP), pages 163--177, 2003.]]
[16]
R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and Query Answering. In International Conference on Database Theory (ICDT), pages 207--224. Springer-Verlag, LNCS 2572, 2003.]]
[17]
A. Fuxman and R. Miller. Towards Inconsistency Management in Data Integration Systems. In IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), 2003.]]
[18]
G. Greco, S. Greco, and E. Zumpano. A Logic Programming Approach to the Integration, Repairing and Querying of Inconsistent Databases. In International Conference on Logic Programming (ICLP), pages 348--364. Springer-Verlag, LNCS 2237, 2001.]]
[19]
G. Greco, S. Greco, and E. Zumpano. A Logical Framework for Querying and Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data Engineering, 15(6):1389--1408, 2003.]]
[20]
A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 10(4):270--294, 2001.]]
[21]
P. C. Kanellakis. Elements of Relational Database Theory. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume~B, chapter~17, pages 1073--1158. Elsevier/MIT Press, 1990.]]
[22]
D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic Programs. In European Conference on Logics for Artificial Intelligence (JELIA), pages 432--443. Springer-Verlag, LNAI 2424, 2002.]]
[23]
J. Wijsen. Condensed Representation of Database Repairs for Consistent Query Answering. In International Conference on Database Theory (ICDT), pages 378--393. Springer-Verlag, LNCS 2572, 2003.]]

Cited By

View all
  • (2023)On measuring inconsistency in definite and indefinite databases with denial constraintsArtificial Intelligence10.1016/j.artint.2023.103884318(103884)Online publication date: May-2023
  • (2022)Consistent Answers of Aggregation Queries via SAT2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00074(924-937)Online publication date: May-2022
  • (2021)CAvSAT: Answering Aggregation Queries over Inconsistent Databases via SAT SolvingProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3452749(2701-2705)Online publication date: 9-Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '04: Proceedings of the thirteenth ACM international conference on Information and knowledge management
November 2004
678 pages
ISBN:1581138741
DOI:10.1145/1031171
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 November 2004

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. inconsistency
  2. integrity constraints
  3. query processing

Qualifiers

  • Article

Conference

CIKM04
Sponsor:
CIKM04: Conference on Information and Knowledge Management
November 8 - 13, 2004
D.C., Washington, USA

Acceptance Rates

Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)On measuring inconsistency in definite and indefinite databases with denial constraintsArtificial Intelligence10.1016/j.artint.2023.103884318(103884)Online publication date: May-2023
  • (2022)Consistent Answers of Aggregation Queries via SAT2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00074(924-937)Online publication date: May-2022
  • (2021)CAvSAT: Answering Aggregation Queries over Inconsistent Databases via SAT SolvingProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3452749(2701-2705)Online publication date: 9-Jun-2021
  • (2021)Generalized Weighted RepairsFlexible Query Answering Systems10.1007/978-3-030-86967-0_6(67-81)Online publication date: 16-Sep-2021
  • (2020)Evaluating top-k queries with inconsistency degreesProceedings of the VLDB Endowment10.14778/3407790.340781513:12(2146-2158)Online publication date: 1-Jul-2020
  • (2020)Reasoning about the Future in Blockchain Databases2020 IEEE 36th International Conference on Data Engineering (ICDE)10.1109/ICDE48307.2020.00206(1930-1933)Online publication date: Apr-2020
  • (2019)Computing and explaining query answers over inconsistent DL-lite knowledge basesJournal of Artificial Intelligence Research10.1613/jair.1.1139564:1(563-644)Online publication date: 1-Jan-2019
  • (2019)CAvSATProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3300095(1823-1825)Online publication date: 25-Jun-2019
  • (2019)A SAT-Based System for Consistent Query AnsweringTheory and Applications of Satisfiability Testing – SAT 201910.1007/978-3-030-24258-9_8(117-135)Online publication date: 29-Jun-2019
  • (2018)The Rise of Big Data Science: A Survey of Techniques, Methods and Approaches in the Field of Natural Language Processing and Network TheoryBig Data and Cognitive Computing10.3390/bdcc20300222:3(22)Online publication date: 2-Aug-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media