Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Matching large XML schemas

Published: 01 December 2004 Publication History

Abstract

Current schema matching approaches still have to improve for very large and complex schemas. Such schemas are increasingly written in the standard language W3C XML schema, especially in E-business applications. The high expressive power and versatility of this schema language, in particular its type system and support for distributed schemas and name-spaces, introduce new issues. In this paper, we study some of the important problems in matching such large XML schemas. We propose a fragment-oriented match approach to decompose a large match problem into several smaller ones and to reuse previous match results at the level of schema fragments.

References

[1]
Aamodt, A., Plaza, E.: Case-based Reasoning - Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7: 1, 1994]]
[2]
Bergamaschi, S. et al.: Semantic Integration of Semistructured and Structured Data Sources. ACM SIGMOD Record 28: 1, 1999]]
[3]
Berlin, J., A. Motro: Autoplex: Automated Discovery of Content for Virtual Databases. CoopIS 2001]]
[4]
Bernstein, P. A. et al: Industrial-strength Schema Matching. ACM SIGMOD Record, 2004 (this issue)]]
[5]
Do, H. H., E. Rahm: COMA - A System for Flexible Combination of Match Algorithms. VLDB 2002]]
[6]
Do, H. H., S. Melnik, E. Rahm: Comparison of Schema Matching Evaluations. GI-Workshop Web and Databases, LNCS 2593, 2003]]
[7]
Doan, A. H. et al.: Reconciling Schemas of Disparate Data Sources: A Machine-Learning Approach. SIGMOD 2001]]
[8]
Li, W., C. Clifton: SemInt - A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using Neural Network. Data and Knowledge Engineering 33:1, 2000]]
[9]
Madhavan, J. et al.: Corpus-based Schema Matching. Workshop on Information Integration on the Web (IIWeb), 2003]]
[10]
Madhavan, J., P. A. Bernstein, E. Rahm: Generic Schema Matching with Cupid. VLDB 2001]]
[11]
Melnik, S., H. Garcia-Molina, E. Rahm: Similarity Flooding - A Versatile Graph Matching Algorithm. ICDE 2002]]
[12]
Mork, P., P. A. Bernstein: Adapting a Generic Match Algorithm to Align Ontologies of Human Anatomy. ICDE 2004]]
[13]
Naumann, F. et al.: Attribute Classification Using Feature Analysis. ICDE 2002]]
[14]
Palopoli, L. et al.: Uniform Techniques for Deriving Similarities of Objects and Subschemes in Heterogeneous Databases. IEEE Trans. Knowl. Data Eng. 15: 2, 2003]]
[15]
Rahm, E., P. A. Bernstein: A Survey of Approaches to Automatic Schema Matching. VLDB Journal 10: 4, 2001]]
[16]
XML Schemas - Best Practices. www.xfront.com/BestPracticesHomepage.html]]

Cited By

View all
  • (2023)Text mining and knowledge graph construction from geoscience literature legacy: A reviewRecent Advancement in Geoinformatics and Data Science10.1130/2022.2558(02)(11-28)Online publication date: 22-Mar-2023
  • (2021)Efficient processing of complex XSD using Hive and SparkPeerJ Computer Science10.7717/peerj-cs.6527(e652)Online publication date: 17-Aug-2021
  • (2019)Transforming XML schemas into OWL ontologies using formal concept analysisSoftware and Systems Modeling (SoSyM)10.1007/s10270-017-0651-418:3(2093-2110)Online publication date: 1-Jun-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 33, Issue 4
December 2004
92 pages
ISSN:0163-5808
DOI:10.1145/1041410
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2004
Published in SIGMOD Volume 33, Issue 4

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Text mining and knowledge graph construction from geoscience literature legacy: A reviewRecent Advancement in Geoinformatics and Data Science10.1130/2022.2558(02)(11-28)Online publication date: 22-Mar-2023
  • (2021)Efficient processing of complex XSD using Hive and SparkPeerJ Computer Science10.7717/peerj-cs.6527(e652)Online publication date: 17-Aug-2021
  • (2019)Transforming XML schemas into OWL ontologies using formal concept analysisSoftware and Systems Modeling (SoSyM)10.1007/s10270-017-0651-418:3(2093-2110)Online publication date: 1-Jun-2019
  • (2018)Mining Abstract XML Data-TypesACM Transactions on the Web10.1145/326746713:1(1-37)Online publication date: 4-Dec-2018
  • (2018)Ontology knowledge mining for ontology conceptual enrichmentKnowledge Management Research & Practice10.1080/14778238.2018.1538599(1-10)Online publication date: 30-Nov-2018
  • (2018)A K-way spectral partitioning of an ontology for ontology matchingDistributed and Parallel Databases10.1007/s10619-018-7222-836:4(643-673)Online publication date: 1-Dec-2018
  • (2017)A New Mapping Approach between XML Schemas in a P2P Environment2017 10th International Conference on Developments in eSystems Engineering (DeSE)10.1109/DeSE.2017.16(212-217)Online publication date: Jun-2017
  • (2016)An efficient similarity matching for clustering XML element2016 Third International Conference on Information Retrieval and Knowledge Management (CAMP)10.1109/INFRKM.2016.7806343(101-106)Online publication date: Aug-2016
  • (2015)A multi‐version CIM‐based database platform for smart gridIEEJ Transactions on Electrical and Electronic Engineering10.1002/tee.2208910:3(330-339)Online publication date: 18-Feb-2015
  • (2014)Scalable ontology matching2014 Iranian Conference on Intelligent Systems (ICIS)10.1109/IranianCIS.2014.6802549(1-4)Online publication date: Feb-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media