Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1060590.1060607acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Worst-case update times for fully-dynamic all-pairs shortest paths

Published: 22 May 2005 Publication History

Abstract

We present here the first solution to the fully-dynamic all pairs shortest path problem where every update is faster than a recomputation from scratch in Ω(n3log ⁄n) time. This is for a directed graph with arbitrary non-negative edge weights. An update inserts or deletes a vertex with all incident edges. After each such vertex update, we update a complete distance matrix in Õ(n2.75) time.

References

[1]
G. M. Ade'lson-Velskiui and E. M. Landis. An algorithm for the organization of information. Dokladi Akademia Nauk SSSR, 146(2):1259--1262, 1962.
[2]
R. Bellman. On a routing problem. Quart. Appl. Math., 16(1):87--90, 1958.
[3]
N. Blum. On the single-operation worst-case time complexity of the disjoint set union problem. SIAM J. Computing, 15(4):1021--1024, 1986.
[4]
G. S. Brodal, G. Lagogiannis, C. Makris, A. Tsakalidis, and Kostas Tsichlas. Optimal finger search trees in the pointer machine. J. Computer and System Sciences, 67(2):381--418, 2003.
[5]
C. Demetrescu and G. Italiano. Fully dynamic transitive closure: Breaking through the o(n2) barrier. In Proc. 41st FOCS, pages 381--389, 2000.
[6]
C. Demetrescu and G. Italiano. A new approach to dynamic all pairs shortest paths. J. ACM, 51(6):968--992, 2004. Announced at STOC'03.
[7]
C. Demetrescu and M. Thorup. Oracles for distances avoiding a link-failure. In Proc. 13th SODA, pages 838--843, 2002.
[8]
E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269--271, 1959.
[9]
D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification --- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669--696, 1997.
[10]
R.W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5(6):345, 1962.
[11]
L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University Press, 1962.
[12]
G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Computing, 14(4):781--798, 1985.
[13]
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596--615, 1987.
[14]
M.L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Computing, 5(1):83--89, 1976.
[15]
M.L. Fredman and M.E. Saks. The cell probe complexity of dynamic data structures. In Proc. 21st STOC, pages 345--354, 1989.
[16]
H. N. Gabow. Efficiency of a good but not linear set union algorithm. J. ACM, 19(2):248--264, 1975.
[17]
M. R. Henzinger and V. King. Randomized dynamic graph algorithms with polylogarithmic time per operation. J. ACM, 46(502--536), 1999. Announced at STOC'95.
[18]
M. R. Henzinger and V. King. Maintaining minimum spanning forests in dynamic graphs. SIAM J. Computing, 31(2):364--374, 2001.
[19]
J. Holm, K. Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge and biconnectivity. J. ACM, 48(4):723--760, 2001.
[20]
V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proc. 40th FOCS, pages 81--89, 1999.
[21]
M. H. Overmars and C. Levcopoulos. A balanced search tree with O(1) worst-case update time. Acta Informatica, 26:269--277, 1988.
[22]
L. Roditty. A faster and simpler fully dynamic transitive closure. In Proc. 14th SODA, pages 404--412, 2003.
[23]
L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs. In Proc. 45th FOCS, pages 499--508, 2004.
[24]
P. Sankowski. Dynamic transitive closure via dynamic matrix inverse. In Proc. 45th FOCS, pages 509--517, 2004.
[25]
M. Thorup. Fully-dynamic all-pairs shortest paths: faster and allowing negative cycles. In Proc. 9th SWAT, pages 384--396, 2004.
[26]
S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11--12, 1962.
[27]
D. E. Willard and G. S. Lueker. Adding range restriction capability to dynamic data structures. J. ACM, 32(3):597--617, 1985.
[28]
J. W. J. Williams. Algorithm 232. Comm. ACM, 7(6):347--348, 1964.

Cited By

View all
  • (2024)Fully Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649695(1141-1152)Online publication date: 10-Jun-2024
  • (2024)Dynamic Deterministic Constant-Approximate Distance Oracles with $n^{\epsilon}$ Worst-Case Update Time2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS61266.2024.00121(2033-2044)Online publication date: 27-Oct-2024
  • (2023)Deterministic Incremental APSP with Polylogarithmic Update Time and StretchProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585213(1173-1186)Online publication date: 2-Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing
May 2005
778 pages
ISBN:1581139608
DOI:10.1145/1060590
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 May 2005

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. dynamic graph algorithms
  2. shortest paths
  3. worst-case update times

Qualifiers

  • Article

Conference

STOC05
Sponsor:
STOC05: Symposium on Theory of Computing
May 22 - 24, 2005
MD, Baltimore, USA

Acceptance Rates

Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Upcoming Conference

STOC '25
57th Annual ACM Symposium on Theory of Computing (STOC 2025)
June 23 - 27, 2025
Prague , Czech Republic

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fully Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649695(1141-1152)Online publication date: 10-Jun-2024
  • (2024)Dynamic Deterministic Constant-Approximate Distance Oracles with $n^{\epsilon}$ Worst-Case Update Time2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS61266.2024.00121(2033-2044)Online publication date: 27-Oct-2024
  • (2023)Deterministic Incremental APSP with Polylogarithmic Update Time and StretchProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585213(1173-1186)Online publication date: 2-Jun-2023
  • (2023)Deterministic Fully Dynamic SSSP and More2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00142(2312-2321)Online publication date: 6-Nov-2023
  • (2023)Sensitivity and Dynamic Distance Oracles via Generic Matrices and Frobenius Form2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00106(1745-1756)Online publication date: 6-Nov-2023
  • (2022)Recent Advances in Fully Dynamic Graph Algorithms – A Quick Reference GuideACM Journal of Experimental Algorithmics10.1145/355580627(1-45)Online publication date: 13-Dec-2022
  • (2022)Deterministic Decremental SSSP and Approximate Min-Cost Flow in Almost-Linear Time2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS52979.2021.00100(1000-1008)Online publication date: Mar-2022
  • (2022)Fully Dynamic s-t Edge Connectivity in Subpolynomial Time (Extended Abstract)2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS52979.2021.00088(861-872)Online publication date: Mar-2022
  • (2021)Approximate distance oracles subject to multiple vertex failuresProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458212(2497-2516)Online publication date: 10-Jan-2021
  • (2021)New techniques and fine-grained hardness for dynamic near-additive spannersProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458174(1836-1855)Online publication date: 10-Jan-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media