Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Survey and benchmark of block ciphers for wireless sensor networks

Published: 01 February 2006 Publication History

Abstract

Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far. We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications.

Supplementary Material

Law Appendix (p65-law-apndx.pdf)
Online appendix to designing mediation for context-aware applications. The appendix supports the information on page 65.

References

[1]
3GPP. 1999. Specification of the 3GPP Confidentiality and Integrity Algorithms Document 2: KASUMI Specification. ETSI/SAGE Specification Version: 1.0.]]
[2]
Anderson, R., Biham, E., and Knudsen, L. 1998. Serpent: A Proposal for the Advanced Encryption Standard. http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf.]]
[3]
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., and Tokita, T. 2001b. Camellia: A 128-Bit Block cipher suitable for multiple platforms. In Proceedings of the Selected Areas in Cryptography (SAC'00), D. Stinson and S. Tavares, Eds. Number 2012 in LNCS. Springer-Verlag, 39--56.]]
[4]
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., and Tokita, T. 2001a. Specification of Camellia---A 128-Bit Block Cipher. Specification Version 2.0, Nippon Telegraph and Telephone Corporation and Mitsubishi Electric Corporation.]]
[5]
Babbage, S. and Frisch, L. 2001. On MISTY1 higher order differential cryptanalysis. In 3rd International Conference on Information Security and Cryptology, ICISC 2000. LNCS, vol. 2015. Springer-Verlag, 22--36.]]
[6]
Barkan, E. and Biham, E. 2002. In how many ways can you write rijndael. In Advances in Cryptology---ASIACRYPT 2002: 8th International Conference on Theory and Application of Cryptology and Information Security, Y. Zheng, Ed. LNCS, vol. 2501. Springer-Verlag, 160-- 175.]]
[7]
Biham, E., Biryukov, A., and Shamir, A. 1999. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In Advances in Cryptology---EUROCRYPT'99: International Conference on the Theory and Application of Cryptographic Techniques. LNCS, vol. 1592. Springer-Verlag, 12--23.]]
[8]
Biham, E. and Furman, V. 2000. Improved impossible differentials on twofish. In Progress in Cryptology---INDOCRYPT 2000: First International Conference in Cryptology in India. LNCS, vol. 1977. Springer-Verlag, 80--92.]]
[9]
Biryukov, A. 1999. Methods of cryptanalysis. Ph.D. thesis, Technion.]]
[10]
Biryukov, A. and Kushilevitz, E. 1998. Improved Cryptanalysis of RC5. In Advances in Cryptology---EUROCRYPT '98, International Conference on the Theory and Application of Cryptographic Techniques. LNCS, vol. 1403. Springer-Verlag, 85--99.]]
[11]
Biryukov, A. and Wagner, D. 2000. Advanced slide attacks. In Advances in Cryptology---EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques. LNCS, vol. 1807. Springer-Verlag, 589--606.]]
[12]
Borst, J., Preneel, B., and Vandewalle, J. 1999. Linear cryptanalysis of RC5 and RC6. In Fast Software Encryption, 6th International Workshop, FSE '99, L. Knudsen, Ed. LNCS, vol. 1636. Springer-Verlag, 16--30.]]
[13]
Burwick, C., Coppersmith, D., D'Avignon, E., Gennaro, R., Halevi, S., Jutla, C., Jr., S. M. M., O'Connor, L., Peyravian, M., Safford, D., and Zunic, N. 1999. MARS---a candidate cipher for AES. http://researchweb.watson.ibm.com/security/mars.pdf.]]
[14]
Carman, D., Kruus, P., and Matt, B. 2000. Constraints and approaches for distributed sensor network security. Tech. Rep. #00-010, NAI Labs.]]
[15]
Cheon, J., Kim, M., Kim, K., and J.-Y. Lee, S. W. K. 2002. Improved impossible differential cryptanalysis of rijndael and crypton. In 4th International Conference on Information Security and Cryptology, ICISC 2001, K. Kim, Ed. LNCS, vol. 2288. Springer-Verlag, 39--49.]]
[16]
Chien, P. and Wen, V. 1998. CS199---StrongARM Energy Measurement Report. Online slides: http://www.cs.berkeley.edu/~vwen/strongarm/slides/cs199.ppt.]]
[17]
Coppersmith, D. 2002. Re: Impact of Courtois and Pieprzyk results. Forum message at http://aes.nist.gov/aes/.]]
[18]
Courtois, N., Goubin, L., Meier, W., and Tacier, J.-D. 2002. Solving underdefined systems of multivariate quadratic equations. In PKC 2002. LNCS, vol. 2274. Springer-Verlag, 211--227.]]
[19]
Courtois, N., Johnson, R., Junod, P., Pornin, T., and Scott, M. 2003. Did Filiol Break AES? Cryptology ePrint Archive: Report 2003/022.]]
[20]
Courtois, N. and Patarin, J. 2003. About the XL Algorithm over GF(2). In Topics in Cryptology---CT-RSA 2003, The Cryptographers' Track at the RSA Conference 2003, M. Joye, Ed. LNCS, vol. 2612. Springer-Verlag, 141--157.]]
[21]
Courtois, N. and Pieprzyk, J. 2002a. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. Cryptology ePrint Archive: Report 2002/044.]]
[22]
Courtois, N. and Pieprzyk, J. 2002b. Cryptanalysis of block ciphers with overdefined systems of equations. In Advances in Cryptology---ASIACRYPT 2002: 8th International Conference on Theory and Application of Cryptology and Information Security, Y. Zheng, Ed. LNCS, vol. 2501. Springer-Verlag, 267--287.]]
[23]
CRYPTREC. 2001. Analysis of RC6. {Text are in chinese font} (trans.: Evaluation report of cryptographic algorithms and related technologies) no. 1086.]]
[24]
CRYPTREC. 2003. {Text are in chinese font} (trans.: Specification of e-government-recommended ciphers). http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/cryptrec20030425_spec01%.html.]]
[25]
Daemen, J., Knudsen, L., and Rijmen, V. 1997. The block Cipher SQUARE. In Fast Software Encryption, 4th International Workshop, FSE '97, E. Biham, Ed. LNCS, vol. 1267. Springer-Verlag, 149--165.]]
[26]
Daemen, J. and Rijmen, V. 1999. AES Proposal: Rijndael.]]
[27]
Dunkelman, O. 2002. Comparing MISTY1 and KASUMI. NESSIE Public Report NES/DOC/TEC/WP5/029/a, Computer Science Department, Technion. Dec.]]
[28]
Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., and Whiting, D. 2001a. Improved Cryptanalysis of Rijndael. In Fast Software Encryption, 7th International Workshop, FSE 2000, B. Schneier, Ed. LNCS, vol. 1978. Springer-Verlag, 213--230.]]
[29]
Ferguson, N., Schroeppel, R., and Whiting, D. 2001b. A Simple Algebraic Representation of Rijndael. In Selected Areas in Cryptography, 8th Annual International Workshop, SAC 2001. LNCS, vol. 2259. Springer-Verlag, 103--111.]]
[30]
Filiol, E. 2003. Plaintext-Dependant Repetition Codes Cryptanalysis of Block Ciphers---The AES Case. Cryptology ePrint Archive: Report 2003/003.]]
[31]
Fuller, J. and Millan, W. 2002. On Linear Redundancy in the AES S-Box. Cryptology ePrint Archive: Report 2002/111.]]
[32]
Gilbert, H., Handschuh, H., Joux, A., and Vaudenay, S. 2000. A statistical attack on RC6. In Fast Software Encryption, 7th International Workshop, FSE 2000. LNCS, vol. 1978. Springer-Verlag, 64--74.]]
[33]
Gilbert, H. and Minier, M. 2000. A collision attack on 7 rounds of Rijndael. In Proceedings of the 3rd AES Conference (AES3).]]
[34]
Hachez, G., Koeune, F., and Quisquater, J.-J. 1999. cAESar results: Implementation of four AES candidates on two smart cards. In 2nd AES Candidate Conference (AES2).]]
[35]
Handschuh, H. and Heys, H. 1998. A timing attack on RC5. In Selected Areas in Cryptography '98, SAC'98, S. Tavares and H. Meijer, Eds. LNCS, vol. 1556. Springer-Verlag, 306--318.]]
[36]
Handschuh, H. and Naccache, D. 2000. SHACAL. In Proceedings of the First Open NESSIE Workshop.]]
[37]
Hatano, Y., Sekine, H., and Kaneko, T. 2002. Higher order differential attack of Camellia(II). In Selected Areas in Cryptography. 9th Annual International Workshop, SAC 2002, K. Nyberg and H. Heys, Eds. LNCS, vol. 2595. Springer-Verlag, 129--146.]]
[38]
He, Y. and Qing, S. 2001. Square Attack on Reduced Camellia Cipher. In Information and Communications Security: Third International Conference, ICICS 2001, S. Qing, T. Okamoto, and J. Zhou, Eds. LNCS, vol. 2229. Springer-Verlag, 238--245.]]
[39]
Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System architecture directions for networked sensors. SIGOPS Oper. Syst. Rev. 34, 5, 93--104.]]
[40]
IEEE. 2003. IEEE Standard for Information technology---Telecommunications and information exchange between systems---Local and metropolitan area networks---Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs).]]
[41]
Intel Corporation 1997. Intel Architecture Software Developer's Manual Volume 2: Instruction Set Reference. Intel Corporation.]]
[42]
Kaliski, B. and Yin, Y. 1998. On the Security of the RC5 Encryption Algorithm. Tech. Rep. TR-602, RSA Laboratories. Sept.]]
[43]
Kang, J.-S., Shin, S.-U., Hong, D., and Yi, O. 2001a. Provable security of KASUMI and 3GPP encryption mode f8. In Advances in Cryptology---ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security, C. Boyd, Ed. LNCS, vol. 2248. Springer-Verlag, 255--271.]]
[44]
Kang, J.-S., Yi, O., Hong, D., and Cho, H. 2001b. Pseudorandomness of MISTY-Type Transformations and the Block Cipher KASUMI. In Proceedings of the 6th Australasian Conference on Information Security and Privacy, ACISP 2001, V. Varadharajan and Y. Mu, Eds. LNCS, vol. 2119. Springer-Verlag, 60--73.]]
[45]
Karlof, C., Sastry, N., and Wagner, D. 2004. TinySec: A link layer security architecture for wireless sensor networks. In SenSys '04: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems. ACM Press, New York, NY, USA, 162-- 175.]]
[46]
Karlof, C. and Wagner, D. 2003. Secure routing in wireless sensor networks: Attacks and countermeasures. Elsevier's Ad Hoc Networks Journal, Special Issue on Sensor Network Applications and Protocols 1, 2--3, 293--315.]]
[47]
Keating, G. 1999. Performance Analysis of AES candidates on the 6805 CPU core. In 2nd AES Candidate Conference (AES2).]]
[48]
Kelsey, J. 2000. Key Separation in Twofish. Tech. Rep. #7, Counterpane Internet Security, Inc. Apr.]]
[49]
Kelsey, J., Schneier, B., Wagner, D., and Hall, C. 1998. Side channel cryptanalysis of product ciphers. In Computer Security (ESORICS'98). LNCS, vol. 1485. Springer-Verlag, 97--110.]]
[50]
Kilian, J. and Rogaway, P. 1996. How to protect DES against exhaustive key search. In Advances in Cryptology---CRYPTO '96: 16th Annual International Cryptology Conference. Number 1109 in LNCS. Springer-Verlag.]]
[51]
Kling, R. 2003. Intel mote: An Enhanced Sensor Network Node. In International Workshop on Advanced Sensors, Structural Health Monitoring and Smart Structures.]]
[52]
Knudsen, L. and Meier, W. 2000. Correlations in RC6 with a reduced number of rounds. In Fast Software Encryption, 7th International Workshop, FSE 2000. LNCS, vol. 1978. Springer-Verlag, 94--108.]]
[53]
Knudsen, L. and Wagner, D. 2002. Integral cryptanalysis. In Fast Software Encryption, 9th International Workshop, FSE 2002, J. Daemen and V. Rijmen, Eds. LNCS, vol. 2365. Springer-Verlag, 112--127.]]
[54]
Kühn, U. 2001. Cryptanalysis of reduced-round MISTY. In Advances in Cryptology---EUROCRYPT 2001. LNCS, vol. 2045. Springer-Verlag, 325--339.]]
[55]
Kühn, U. 2002. Improved Cryptanalysis of MISTY1. In Fast Software Encryption, 9th International Workshop, FSE 2002. LNCS, vol. 2365. Springer-Verlag, 61--75.]]
[56]
Lee, S., Hong, S., Lee, S., Lim, J., and Yoon, S. 2002. Truncated differential cryptanalysis of Camellia. In 4th International Conference on Information Security and Cryptology, ICISC 2001, K. Kim, Ed. LNCS, vol. 2288. Springer-Verlag, 32--38.]]
[57]
Lenstra, A. K. and Verheul, E. R. 2001. Selecting cryptographic key sizes. Journal of Cryptology 14, 4, 255--293.]]
[58]
Li, T., Wu, H., Wang, X., and Bao, F. 2005. SenSec Design. Tech. Rep. TR-I2R-v1.1, InfoComm Security Department, Institute for Infocomm Research. Feb.]]
[59]
Liu, D., Ning, P., and Li, R. 2005. Establishing pairwise keys in distributed sensor networks. ACM Trans. Inf. Syst. Secur. 8, 1, 41--77.]]
[60]
Lucks, S. 2002. The saturation attack---A Bait for Twofish. In Fast Software Encryption, 8th International Workshop, FSE 2001. LNCS, vol. 2355. Springer-Verlag, 1--15.]]
[61]
Matsui, M. 1993. Linear Cryptanalysis of DES. In Advances in Cryptology---EUROCRYPT '93: Workshop on the Theory and Application of Cryptographic Techniques. LNCS, vol. 765. Springer-Verlag, 386--397.]]
[62]
Matsui, M. 1997. New Block Encryption Algorithm MISTY. In Fast Software Encryption, 4th International Workshop, FSE '97, E. Biham, Ed. LNCS, vol. 1267. Springer-Verlag, 54--68.]]
[63]
Matsui, M. and Tokita, T. 2000. MISTY, KASUMI and Camellia Cipher Algorithm. Mitsubishi Electric ADVANCE (Cryptography Edition) 100, 2--8.]]
[64]
Mirza, F. and Murphy, S. 1999. An observation on the key schedule of twofish. In Proceedings of the 2nd AES Conference (AES2).]]
[65]
Mitsubishi Electric Corp. 2001. http://info.isl.ntt.co.jp/crypt/camellia/dl/camellia.c.]]
[66]
Miyaji, A., Nonaka, M., and Takii, Y. 2002. Known plaintext correlation attack against RC5. In Topics in Cryptology---CT-RSA 2002, The Cryptographers' Track at the RSA Conference 2002, B. Preneel, Ed. LNCS, vol. 2271. Springer-Verlag, 131--148.]]
[67]
Moh, T. 2002. On the Courtois-Pieprzyk's Attack on Rijndael. Web page: http://www.usdsi.com/aes.html.]]
[68]
Murphy, S. 2000. The key Separation of twofish. In Proceedings of the 3rd AES Conference (AES3).]]
[69]
Murphy, S. and Robshaw, M. 2002a. Comments on the Security of the AES and the XSL Technique. http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/xslnote.pdf.]]
[70]
Murphy, S. and Robshaw, M. 2002b. Essential algebraic structure within the AES. In Advances in Cryptology---CRYPTO 2002, 22nd Annual International Cryptology Conference, M. Yung, Ed. LNCS, vol. 2442. Springer-Verlag, 1--16.]]
[71]
Murphy, S. and Robshaw, M. 2002c. Key-dependent s-boxes and differential cryptanalysis. Des. Codes Cryptography 27, 3, 229--255.]]
[72]
Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., and Roback, E. 2000. Report on the Development of the Advanced Encryption Standard (AES). Tech. rep., NIST.]]
[73]
NESSIE Consortium 2003. Portfolio of recommended cryptographic primitives. NESSIE Consortium.]]
[74]
NIST 1998. Skipjack and KEA Algorithm Specifications Version 2.0. NIST.]]
[75]
Nyberg, K. 1995. Linear approximations of block ciphers. In Advances in Cryptology---EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques. LNCS, vol. 950. Springer-Verlag, 439--444.]]
[76]
Ohta, H. and Matsui, M. 2000. A Description of the MISTY1 Encryption Algorithm. RFC 2994, Network Working Group, IETF. Nov.]]
[77]
Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar, J. 2001. SPINS: Security protocols for sensor networks. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking. ACM Press, 189--199.]]
[78]
Polastre, J., Hill, J., and Culler, D. 2004. Versatile low power media access for wireless sensor networks. In SenSys '04: Proceedings of the 2nd international conference on Embedded networked sensor systems. ACM Press, 95--107.]]
[79]
Preneel, B. 1998. Cryptographic primitives for information authentication---state of the art. In State of the Art in Appplied Cryptography, B. Preneel and V. Rijmen, Eds. LNCS, vol. 1528. Springer-Verlag, 50--105.]]
[80]
Preneel, B., Biryukov, A., Oswald, E., Rompay, B. V., Granboulan, L., Dottax, E., Murphy, S., Dent, A., White, J., Dichtl, M., Pyka, S., Schafheutle, M., Serf, P., Biham, E., Barkan, E., Dunkelman, O., Quisquater, J.-J., Ciet, M., Sica, F., Knudsen, L., Parker, M., and Raddum, H. 2003. NESSIE Security Report. Deliverable D20, NESSIE Consortium. Feb.]]
[81]
Reichardt, B. and Wagner, D. 2002. Markov truncated differential cryptanalysis of skipjack. In Selected Areas in Cryptography: 9th Annual International Workshop (SAC 2002). LNCS, vol. 2595. Springer-Verlag, 110--128.]]
[82]
Rivest, R. 1995. The RC5 Encryption Algorithm. In Proceedings of the 1994 Leuven Workshop on Fast Software Encryption. Springer-Verlag, 86--96.]]
[83]
Rivest, R., Robshaw, M., Sidney, R., and Yin, Y. 1998. The RC6#8482; Block Cipher. Specification version 1.1.]]
[84]
Sano, F., Koike, M., Kawamura, S., and Shiba, M. 2001. Performance evaluation of aes finalists on the high-end smart card. In Proceedings of the 3rd AES Conference (AES3).]]
[85]
Schneier, B. 1994. Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish). In Fast Software Encryption, Cambridge Security Workshop Proceedings. LNCS. Springer-Verlag, 191--204.]]
[86]
Schneier, B. 1996. Applied Cryptography: Protocols, Algorithms and Source Code in C, 2nd ed. John Wiley & Sons, Inc.]]
[87]
Schneier, B. 2002a. AES News. Crypto-gram newsletter, Counterpane Internet Security, Inc. Sept.]]
[88]
Schneier, B. 2002b. More on AES Cryptanalysis. Crypto-gram newsletter, Counterpane Internet Security, Inc. Oct.]]
[89]
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. 1998. Twofish: A 128-Bit Block Cipher. http://www.schneier.com/paper-twofish-paper.pdf.]]
[90]
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. 1999a. On the twofish key schedule. In Selected Areas in Cryptography '98, SAC'98, S. Tavares and H. Meijer, Eds. LNCS, vol. 1556. Springer-Verlag, 27--42.]]
[91]
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. 1999b. The Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley.]]
[92]
Schneier, B. and Whiting, D. 2001. A performance comparison of the five AES finalists. In Proceedings of the 3rd AES Conference (AES3).]]
[93]
Shimoyama, T., Takenaka, M., and Koshiba, T. 2002. Multiple linear cryptanalysis of a reduced round RC6. In Fast Software Encryption, 9th International Workshop, FSE 2002, J. Daemen and V. Rijmen, Eds. Vol. 2365. Springer-Verlag, 76--88.]]
[94]
Shimoyama, T., Takeuchi, K., and Hayakawa, J. 2000. Correlation Attack to the Block Cipher RC5 and the Simplified Variants of RC6. In Proceedings of the 3rd AES Conference (AES3).]]
[95]
Slijepcevic, S., Tsiatsis, V., Zimbeck, S., Srivastava, M., and Potkonjak, M. 2002. On communication security in wireless ad-hoc sensor networks. In 11th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises. 139--144.]]
[96]
Sugita, M., Kobara, K., and Imai, H. 2001. Security of reduced version of the block cipher camellia against truncated and impossible differential cryptanalysis. In Advances in Cryptology---ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security, C. Boyd, Ed. LNCS, vol. 2248. Springer-Verlag, 193--207.]]
[97]
Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D. 2004. Lessons from a sensor network expedition. In Proceedings of the 1st European Workshop Wireless Sensor Networks (EWSN 04). LNCS, vol. 2920. Springer-Verlag, 307--322.]]
[98]
Takenaka, M., Shimoyama, T., and Koshiba, T. 2002. Theoretical Analysis of “Correlations in RC6”. Cryptology ePrint Archive: Report 2002/176.]]
[99]
Takenaka, M., Shimoyama, T., and Koshiba, T. 2003. Theoretical analysis of χ2 attack on RC6. In Proceedings of the 8th Australasian Conference on Information Security and Privacy (ACISP2003). LNCS, vol. 2727. Springer-Verlag, 142--153.]]
[100]
Tanaka, H., Ishii, C., and Kaneko, T. 2001. On the strength of KASUMI without FL functions against higher order differential attack. In 3rd International Conference on Information Security and Cryptology, ICISC 2000. LNCS, vol. 2015. Springer-Verlag, 14--21.]]
[101]
Texas Instruments, Inc. 2001. MSP430x13x, MSP430x14x Mixed Signal Microcontroller. Datasheet.]]
[102]
Tri Van Le. 2003. Novel Cyclic and Algebraic Properties of AES. Cryptology ePrint Archive: Report 2003/108.]]
[103]
van Dam, T. and Langendoen, K. 2003. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the First International Conference on Embedded Networked Sensor Systems. ACM Press, 171--180.]]
[104]
van Hoesel, L., Dulman, S., Havinga, P., and Kip, H. 2003. Design of a low-power testbed for wireless sensor networks and verification. Tech. Rep. TR-CTIT-03-45, Centre for Telematics and Information Technology, University of Twente, The Netherlands. Sept.]]
[105]
Whiting, D. 1998. http://www.schneier.com/code/twofish-optimized-c.zip.]]
[106]
Worley, J., Worley, B., Christian, T., and Worley, C. 2001. AES Finalists on PA-RISC and IA-64: Implementations & performance. In Proceedings of the 3rd AES Conference (AES3).]]
[107]
Xue, Q. and Ganz, A. 2003. Runtime security composition for sensor networks (SecureSense). In IEEE Vehicular Technology Conference (VTC Fall 2003).]]
[108]
Ye, W., Heidemann, J., and Estrin, D. 2002. An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the IEEE Infocom. USC/Information Sciences Institute, IEEE, New York, NY, USA, 1567--1576.]]
[109]
Yeom, Y., Park, S., and Kim, I. 2002. On the security of CAMELLIA against the square attack. In Fast Software Encryption, 9th International Workshop, FSE 2002, J. Daemen and V. Rijmen, Eds. LNCS, vol. 2365. Springer-Verlag, 128--142.]]
[110]
Youssef, A. and Tavares, S. 2002. On Some Algebraic Structures in the AES Round Function. Cryptology ePrint Archive: Report 2002/144.]]
[111]
Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. 2004. Hardware design experiences in ZebraNet. In 2nd International Conference on Embedded Networked Sensor Systems. ACM Press, 227--238.]]
[112]
Zhu, S., Setia, S., and Jajodia, S. 2003. LEAP: Efficient security mechanisms for large-scale distributed sensor networks. In 10th ACM Conference on Computer and Communications Security (CCS '03). ACM Press, 62--72.]]

Cited By

View all
  • (2025)In-depth study of lightweight block ciphers: Performance assessment and implementation on sensor motesAlexandria Engineering Journal10.1016/j.aej.2024.11.023113(461-479)Online publication date: Feb-2025
  • (2024)Securing Underwater Wireless Sensor Networks: A Review of Attacks and Mitigation TechniquesIEEE Access10.1109/ACCESS.2024.349049812(161096-161133)Online publication date: 2024
  • (2024)Aligning security and energy-efficiency using change detection and partial encryption for wireless camera networksEngineering Science and Technology, an International Journal10.1016/j.jestch.2024.10168953(101689)Online publication date: May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks  Volume 2, Issue 1
February 2006
153 pages
ISSN:1550-4859
EISSN:1550-4867
DOI:10.1145/1138127
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 01 February 2006
Published in TOSN Volume 2, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Sensor networks
  2. block ciphers
  3. cryptography
  4. energy efficiency

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)2
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)In-depth study of lightweight block ciphers: Performance assessment and implementation on sensor motesAlexandria Engineering Journal10.1016/j.aej.2024.11.023113(461-479)Online publication date: Feb-2025
  • (2024)Securing Underwater Wireless Sensor Networks: A Review of Attacks and Mitigation TechniquesIEEE Access10.1109/ACCESS.2024.349049812(161096-161133)Online publication date: 2024
  • (2024)Aligning security and energy-efficiency using change detection and partial encryption for wireless camera networksEngineering Science and Technology, an International Journal10.1016/j.jestch.2024.10168953(101689)Online publication date: May-2024
  • (2024)Energy-Efficient Dynamic Adaptive Encryption for Low-Resource Internet of ThingsEAI 3rd International Conference on Smart Technologies and Innovation Management10.1007/978-3-031-64957-8_15(191-202)Online publication date: 31-Oct-2024
  • (2022)Blockchain With the Internet of Things for Secure Healthcare Service Using Lightweight CryptographyBlockchain Applications in Cryptocurrency for Technological Evolution10.4018/978-1-6684-6247-8.ch004(60-93)Online publication date: 30-Dec-2022
  • (2022)Cryptography and Blockchain Solutions for Security Protection of Internet of Things ApplicationsInformation Security Practices for the Internet of Things, 5G, and Next-Generation Wireless Networks10.4018/978-1-6684-3921-0.ch008(152-178)Online publication date: 3-Jun-2022
  • (2022)Timed Automaton-Based Quantitative Feasibility Analysis of Symmetric Cipher in Embedded RTOSSecurity and Communication Networks10.1155/2022/41189942022Online publication date: 1-Jan-2022
  • (2022)Ultra-lightweight FPGA-based RC5 designs via data-dependent rotation block optimizationMicroprocessors & Microsystems10.1016/j.micpro.2022.10458893:COnline publication date: 1-Sep-2022
  • (2022)Benchmarking of lightweight cryptographic algorithms for wireless IoT networksWireless Networks10.1007/s11276-022-03046-128:8(3453-3476)Online publication date: 1-Nov-2022
  • (2021)Secure Communication Techniques for Underwater WSNsEnergy-Efficient Underwater Wireless Communications and Networking10.4018/978-1-7998-3640-7.ch011(171-186)Online publication date: 2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media