Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1143844.1143870acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Trading convexity for scalability

Published: 25 June 2006 Publication History

Abstract

Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how non-convexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

References

[1]
Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., & Marcotte, P. (2006). Convex neural networks. In Y. Weiss, B. Schöölkopf and J. Platt (Eds.), Advances in neural information processing systems 18, 123--130. Cambridge, MA: MIT Press.
[2]
Bennett, K., & Demiriz, A. (1998). Semi-supervised support vector machines. In M. S. Kearns, S. A. Solla and D. A. Cohn (Eds.), Advances in neural information processing systems 12, 368--374. Cambridge, MA: MIT Press.
[3]
Bie, T. D., & Cristianini, N. (2004). Convex methods for transduction. In S. Thrun, L. Saul and B. Schöölkopf (Eds.), Advances in neural information processing systems 16. Cambridge, MA: MIT Press.
[4]
Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density separation. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics.
[5]
Ciarlet, P. G. (1990). Introduction à l'analyse numérique matricielle et à l'optimisation. Masson.
[6]
Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition, vol. 31 of Applications of mathematics. New York: Springer.
[7]
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proceedings of the 13th International Conference on Machine Learning (pp. 148--146). Morgan Kaufmann.
[8]
Fung, G., & Mangasarian, O. (2001). Semi-supervised support vector machines for unlabeled data classification. In Optimisation methods and software, 1--14. Boston: Kluwer Academic Publishers.
[9]
Joachims, T. (1999). Transductive inference for text classification using support vector machines. International Conference on Machine Learning, ICML.
[10]
Krause, N., & Singer, Y. (2004). Leveraging the margin more carefully. International Conference on Machine Learning, ICML.
[11]
Le Thi, H. A. (1994). Analyse numérique des algorithmes de l'optimisation d.c. approches locales et globale. codes et simulations numériques en grande dimension. applications. Doctoral dissertation, INSA, Rouen.
[12]
LeCun, Y., Bottou, L., Orr, G. B., & Müüller, K.-R. (1998). Efficient backprop. In G. Orr and K.-R. Müller (Eds.), Neural networks: Tricks of the trade, 9--50. Springer.
[13]
Lewis, D. D., Yang, Y., Rose, T., & Li, F. (2004). Rcv1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5, 361--397.
[14]
Liu, Y., Shen, X., & Doss, H. (2005). Multicategory ψψ-learning and support vector machine: Computational tools. Journal of Computational & Graphical Statistics, 14, 219--236.
[15]
Mason, L., Bartlett, P. L., & Baxter, J. (2000). Improved generalization through explicit optimization of margins. Machine Learning, 38, 243--255.
[16]
Pérez-Cruz, F., Navia-Vázquez, A., Figueiras-Vidal, A. R., & Artéés-Rodríguez, A. (2002). Empirical risk minimization for support vector classifiers. IEEE Transactions on Neural Networks, 14, 296--303.
[17]
Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges and A. Smola (Eds.), Advances in kernel methods. The MIT Press.
[18]
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.
[19]
Shen, X., Tseng, G. C., Zhang, X., & Wong, W. H. (2003). On (psi)-learning. Journal of the American Statistical Association, 98, 724--734.
[20]
Smola, A. J., Vishwanathan, S. V. N., & Hofmann, T. (2005). Kernel methods for missing variables. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics.
[21]
Steinwart, I. (2003). Sparseness of support vector machines. Journal of Machine Learning Research, 4, 1071--1105.
[22]
Steinwart, I., & Scovel, C. (2005). Fast rates to bayes for kernel machines. In L. K. Saul, Y. Weiss and L. Bottou (Eds.), Advances in neural information processing systems 17, 1345--1352. Cambridge, MA: MIT Press.
[23]
Vapnik, V. (1995). The nature of statistical learning theory. Springer. Second edition.
[24]
Xu, L., Neufeld, J., Larson, B., & Schuurmans, D. (2005). Maximum margin clustering. In L. K. Saul, Y. Weiss and L. Bottou (Eds.), Advances in neural information processing systems 17, 1537--1544. Cambridge, MA: MIT Press.
[25]
Yuille, A. L., & Rangarajan, A. (2002). The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press.

Cited By

View all
  • (2025)Global Model Selection via Solution Paths for Robust Support Vector MachineIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.334676547:3(1331-1347)Online publication date: Mar-2025
  • (2025)Power System Transient Stability Assessment Based on Double-Stage Support Vector MachineThe Proceedings of the 19th Annual Conference of China Electrotechnical Society10.1007/978-981-96-1379-3_24(223-234)Online publication date: 7-Jan-2025
  • (2024)On the effects of fairness to adversarial vulnerabilityProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/58(521-529)Online publication date: 3-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '06: Proceedings of the 23rd international conference on Machine learning
June 2006
1154 pages
ISBN:1595933832
DOI:10.1145/1143844
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 June 2006

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Acceptance Rates

ICML '06 Paper Acceptance Rate 140 of 548 submissions, 26%;
Overall Acceptance Rate 140 of 548 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)27
  • Downloads (Last 6 weeks)3
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Global Model Selection via Solution Paths for Robust Support Vector MachineIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.334676547:3(1331-1347)Online publication date: Mar-2025
  • (2025)Power System Transient Stability Assessment Based on Double-Stage Support Vector MachineThe Proceedings of the 19th Annual Conference of China Electrotechnical Society10.1007/978-981-96-1379-3_24(223-234)Online publication date: 7-Jan-2025
  • (2024)On the effects of fairness to adversarial vulnerabilityProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/58(521-529)Online publication date: 3-Aug-2024
  • (2024)Pinball-OCSVM for Early-Stage COVID-19 Diagnosis with Limited Posteroanterior Chest X-Ray ImagesInternational Journal of Pattern Recognition and Artificial Intelligence10.1142/S021800142457002738:03Online publication date: 1-Apr-2024
  • (2024)Online Stochastic DCA With Applications to Principal Component AnalysisIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.321355835:5(7035-7047)Online publication date: May-2024
  • (2024)Generalized robust loss functions for machine learningNeural Networks10.1016/j.neunet.2023.12.013171(200-214)Online publication date: Mar-2024
  • (2024)MVQSInformation Sciences: an International Journal10.1016/j.ins.2024.120467675:COnline publication date: 1-Jul-2024
  • (2024)A two-stage denoising framework for zero-shot learning with noisy labelsInformation Sciences10.1016/j.ins.2023.119852654(119852)Online publication date: Jan-2024
  • (2024)Advancing robust regression: Addressing asymmetric noise with the BLINEX loss functionInformation Fusion10.1016/j.inffus.2024.102463110(102463)Online publication date: Oct-2024
  • (2024)Large-scale robust regression with truncated loss via majorization-minimization algorithmEuropean Journal of Operational Research10.1016/j.ejor.2024.04.028319:2(494-504)Online publication date: Dec-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media