Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Approximate distance oracles for geometric spanners

Published: 28 March 2008 Publication History

Abstract

Given an arbitrary real constant ε > 0, and a geometric graph G in d-dimensional Euclidean space with n points, O(n) edges, and constant dilation, our main result is a data structure that answers (1 + ε)-approximate shortest-path-length queries in constant time. The data structure can be constructed in O(n log n) time using O(n log n) space. This represents the first data structure that answers (1 + ε)-approximate shortest-path queries in constant time, and hence functions as an approximate distance oracle. The data structure is also applied to several other problems. In particular, we also show that approximate shortest-path queries between vertices in a planar polygonal domain with “rounded” obstacles can be answered in constant time. Other applications include query versions of closest-pair problems, and the efficient computation of the approximate dilations of geometric graphs. Finally, we show how to extend the main result to answer (1 + ε)-approximate shortest-path-length queries in constant time for geometric spanner graphs with m = ω(n) edges. The resulting data structure can be constructed in O(m + n log n) time using O(n log n) space.

References

[1]
Agarwal, P. K., Har-Peled, S., and Karia, M. 2000. Computing approximate shortest paths on convex polytopes. In Proceedings of the 16th ACM Symposium on Computational Geometry, 270--279.
[2]
Agarwal, P. K., Har-Peled, S., Sharir, M., and Varadarajan, K. R. 1997. Approximate shortest paths on a convex polytope in three dimensions. J. ACM 44, 567--584.
[3]
Aingworth, D., Chekuri, C., Indyk, P., and Motwani, R. 1999. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167--1181.
[4]
Arikati, S., Chen, D. Z., Chew, L. P., Das, G., Smid, M., and Zaroliagis, C. D. 1996. Planar spanners and approximate shortest path queries among obstacles in the plane. In Proceedings of the 4th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 1136. Springer, Berlin, 514--528.
[5]
Arora, S. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753--782.
[6]
Arora, S. 1997. Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 554--563.
[7]
Bartal, Y. 1996. Probabilistic approximations of metric spaces and its algorithmic applications. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 184--193.
[8]
Baswana, S., and Sen, S. 2004. Approximate distance oracles for unweighted graphs in Õ(n2) time. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), 271--280.
[9]
Bender, M. A., and Farach-Colton, M. 2000. The LCA problem revisited. In Proceedings of the 4th Latin American Symposium on Theoretical Informatics. Lecture Notes in Computer Science, vol. 1776. Springer, Berlin, 88--94.
[10]
Callahan, P. B. 1995. Dealing with her dimensions: The well-separated pair decomposition and its applications. Ph.D. thesis, Department of Computer Science, Johns Hopkins University, Baltimore, Maryland.
[11]
Callahan, P. B., and Kosaraju, S. R. 1993. Faster algorithms for some geometric graph problems in higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms (SODA), 291--300.
[12]
Callahan, P. B., and Kosaraju, S. R. 1995. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67--90.
[13]
Chan, T. M. 1998. Approximate nearest neighbor queries revisited. Discr. Comput. Geom. 20, 359--373.
[14]
Chen, D. Z. 1995. On the all-pairs Euclidean short path problem. In Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), 292--301.
[15]
Chen, D. Z., Daescu, O., and Klenk, K. S. 2001. On geometric path query problems. Int. J. Comput. Geom. Appl. 11, 617--645.
[16]
Chen, D. Z., Klenk, K. S., and Tu, H.-Y. T. 2000. Shortest path queries among weighted obstacles in the rectilinear plane. SIAM J. Comput. 29, 1223--1246.
[17]
Clarkson, K. L. 1987. Approximation algorithms for shortest path motion planning. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), 56--65.
[18]
Cohen, E. 1998. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28, 210--236.
[19]
Das, G., and Narasimhan, G. 1997. A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297--315.
[20]
Das, G., and Joseph, D. 1989. Which triangulations approximate the complete graph? In Proceedings of the International Symposium on Optimal Algorithms. Lecture Notes in Computer Science, vol. 401. Springer, Berlin, 168--192.
[21]
de Berg, M., Katz, M. J., van der Stappen, A. F., and Vleugels, J. 2002. Realistic input models for geometric algorithms. Algorithmica 34, 81--97.
[22]
Dor, D., Halperin, S., and Zwick, U. 2000. All-Pairs almost shortest paths. SIAM J. Comput. 29, 1740--1759.
[23]
Gao, J., Guibas, L. J., Hershberger, J., Zhang, L., and Zhu, A. 2003. Discrete mobile centers. Discr. Comput. Geom. 30, 45--63.
[24]
Gonzalez, T. 1975. Algorithms on sets and related problems. Tech. Rep., Department of Computer Science, University of Oklahoma, Norman.
[25]
Gudmundsson, J., Levcopoulos, C., and Narasimhan, G. 2002. Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31, 1479--1500.
[26]
Gudmundsson, J., Narasimhan, G., and Smid, M. 2005. Fast pruning of geometric spanners. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 3404. Springer, Berlin, 508--520.
[27]
Gudmundsson, J., Levcopoulos, C., Narasimhan, G., and Smid, M. 2002a. Approximate distance oracles for geometric graphs. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), 828--837.
[28]
Gudmundsson, J., Levcopoulos, C., Narasimhan, G., and Smid, M. 2002b. Approximate distance oracles revisited. In Proceedings of the 13th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 2518. Springer, Berlin, 357--368.
[29]
Guibas, L. J., and Hershberger, J. 1989. Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39, 126--152.
[30]
Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge, UK.
[31]
Har-Peled, S. 1997. Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions. In Proceedings of the 13th ACM Symposium on Computational Geometry, 359--365.
[32]
Harel, D., and Tarjan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 338--355.
[33]
Hershberger, J., and Suri, S. 1999. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28, 2215--2256.
[34]
Indyk, P. 2001. Algorithmic applications of low-distortion geometric embeddings. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 10--33.
[35]
Kapoor, S., Maheshwari, S. N., and Mitchell, J. S. B. 1997. An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discr. Comput. Geom. 18, 377--383.
[36]
Keil, J. M., and Gutwin, C. A. 1992. Classes of graphs which approximate the complete Euclidean graph. Discr. Comput. Geom. 7, 13--28.
[37]
Lee, D. T., and Wu, Y. F. 1986. Geometric complexity of some location problems. Algorithmica 1, 193--211.
[38]
Mitchell, J. S. B. 1996. Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6, 309--332.
[39]
Mitchell, J. S. B. 1998. Geometric shortest paths and network optimization. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, eds. Elsevier Science, Amsterdam, Chapter 24, 633--701.
[40]
Mitchell, J. S. B. 1997. Shortest paths and networks. In Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, eds. CRC Press LLC, Boca Raton, FL, Chapter 24, 445--466.
[41]
Narasimhan, G., and Smid, M. 2000. Approximating the stretch factor of Euclidean graphs. SIAM J. Comput. 30, 978--989.
[42]
Overmars, M. H., and van der Stappen, A. F. 1996. Range searching and point location among fat objects. J. Algor. 21, 629--656.
[43]
Preparata, F. P., and Shamos, M. I. 1988. Computational Geometry: An Introduction. Springer, Berlin.
[44]
Pyrga, E., Schulz, F., Wagner, D., and Zaroliagis, C. 2004. Experimental comparison of shortest path approaches for timetable information. In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments. Lecture Notes in Computer Science. Springer, Berlin, 88--99.
[45]
Salowe, J. S. 1991. Constructing multidimensional spanner graphs. Int. J. Comput. Geom. Appl. 1, 99--107.
[46]
Schieber, B., and Vishkin, U. 1988. On finding lowest common ancestors: Simplifications and parallelisations. SIAM J. Comput. 17, 327--334.
[47]
Suri, S. 1997. Polygons. In Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, eds. CRC Press LLC, Boca Raton, FL, Chapter 23, 429--444.
[48]
Thorup, M. 2004. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51, 993--1024.
[49]
Thorup, M., and Zwick, U. 2001. Approximate distance oracles. In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), 183--192.
[50]
Wagner, D., and Willhalm, T. 2003. Geometric speed-up techniques for finding shortest paths in large sparse graphs. In Proceedings of the 11th Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 2832. Springer, Berlin, 776--787.
[51]
Wagner, D., Willhalm, T., and Zaroliagis, C. 2004. Dynamic shortest path containers. In Proceedings of the 3rd Workshop on Algorithmic Methods and Models for Optimization of Railways. Electronic Notes in Theoretical Computer Science, vol. 92. Elsevier, 65--84.

Cited By

View all
  • (2024)Approximate distance oracle for fault-tolerant geometric spannersProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i18.29987(20087-20095)Online publication date: 20-Feb-2024
  • (2024)Online Euclidean SpannersACM Transactions on Algorithms10.1145/368179021:1(1-22)Online publication date: 4-Nov-2024
  • (2024)Online Spanners in Metric SpacesSIAM Journal on Discrete Mathematics10.1137/22M153457238:1(1030-1056)Online publication date: 12-Mar-2024
  • Show More Cited By

Index Terms

  1. Approximate distance oracles for geometric spanners

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Algorithms
    ACM Transactions on Algorithms  Volume 4, Issue 1
    March 2008
    343 pages
    ISSN:1549-6325
    EISSN:1549-6333
    DOI:10.1145/1328911
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 March 2008
    Accepted: 01 August 2007
    Revised: 01 May 2006
    Received: 01 April 2005
    Published in TALG Volume 4, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Shortest paths
    2. approximation algorithm
    3. computational geometry
    4. geometric graphs
    5. spanners

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Approximate distance oracle for fault-tolerant geometric spannersProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i18.29987(20087-20095)Online publication date: 20-Feb-2024
    • (2024)Online Euclidean SpannersACM Transactions on Algorithms10.1145/368179021:1(1-22)Online publication date: 4-Nov-2024
    • (2024)Online Spanners in Metric SpacesSIAM Journal on Discrete Mathematics10.1137/22M153457238:1(1030-1056)Online publication date: 12-Mar-2024
    • (2022)Euclidean Steiner SpannersSIAM Journal on Discrete Mathematics10.1137/22M150270736:3(2411-2444)Online publication date: 1-Jan-2022
    • (2022)Truly Optimal Euclidean SpannersSIAM Journal on Computing10.1137/20M1317906(FOCS19-135-FOCS19-199)Online publication date: 31-Mar-2022
    • (2022)Optimal Approximate Distance Oracle for Planar Graphs2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS52979.2021.00044(363-374)Online publication date: Feb-2022
    • (2022)Reachability Problems for Transmission GraphsAlgorithmica10.1007/s00453-022-00985-184:10(2820-2841)Online publication date: 1-Oct-2022
    • (2021)Reachability Problems for Transmission GraphsAlgorithms and Data Structures10.1007/978-3-030-83508-8_6(71-84)Online publication date: 9-Aug-2021
    • (2019)Truly Optimal Euclidean Spanners2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS.2019.00069(1078-1100)Online publication date: Nov-2019
    • (2016)Applications of Geometric Spanner NetworksEncyclopedia of Algorithms10.1007/978-1-4939-2864-4_15(86-90)Online publication date: 22-Apr-2016
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media