Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Constructing visual phrases for effective and efficient object-based image retrieval

Published: 30 October 2008 Publication History

Abstract

The explosion of multimedia data necessitates effective and efficient ways for us to get access to our desired ones. In this article, we draw an analogy between image retrieval and text retrieval and propose a visual phrase-based approach to retrieve images containing desired objects (object-based image retrieval). The visual phrase is defined as a pair of frequently co-occurred adjacent local image patches and is constructed using data mining. We design methods on how to construct visual phrase and how to index/search images based on visual phrase. We demonstrate experiments to show our visual phrase-based approach can be very efficient and more effective than current visual word-based approach.

References

[1]
Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceeding of the 20th International Conference on VLDB, J. B. Bocca, M. Jarke, C., and Zaniolo, Eds. Morgan Kaufmann, Los Altos, CA. 487--499.
[2]
Agarwal, S., Awan, A., and roth, D. 2004. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Patt. Anal. Machine Intell. 26, 11, 1475--1490.
[3]
Carson, C., Thomas, M., Belongie, S., and Malik, J. 2002. Blobworld: Image segmentation using expectation maximization and its application to image querying. IEEE Trans. Patt. Anal. Machine Intell. 24, 8, 1026--1038.
[4]
Ceglar, A. and Roddick, J. F. 2006. Association mining. ACM Comput. Surv. 38, 2.
[5]
Cox, I. J., Miller, M. L., Minka, T. P., Papathomas, T. V., and Yianilos, P. N. 2000. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9, 1, 20--37.
[6]
Datta, R., Joshi, D., Li, J., and Wang, J. 2006. Image retrieval: ideas, influences, and trends of the new age. Penn Sate University Tech. rep. CSE 06--009.
[7]
Enser, P. G. B. and Sandom, C. J. 2003. Towards a comprehensive survey of the semantic gap in visual image retrieval. In Proceedings of the 2nd International Conference on Image and video retrieval. E. M. Bakker, T. S. Huang, M. S. Lew, N. Sebe, and X. Zhou, Eds. Springer-Verlag, London, UK. 291--299
[8]
Fergus, R., Li, F. --F., Perona, P., and Zisserman, A. 2005. Learning object categories from Google's image search. In Proceedings of the 10th IEEE International Conference on Computer Vision. IEEE Computer Society, Vol. 2, 1816--1823.
[9]
FlickneR, M., Sawheny, H., Niblack, W., Ashley, J., Qian Huang Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. 1995. Query by image and video content: The QBIC system. IEEE Comput. 28, 9, 23--32.
[10]
Garcya-Perez, D., Mosquera, A., Berretti, S., and Del Bimbo, A. 2006. Object-based image retrieval using active nets. In Proceedings of the 18th International Conference on Pattern Recognition, Vol. 4, 750--753.
[11]
Goethals, B. 2003. Survey on frequent pattern mining. Helsinki Institute for Information Technology tech. rep.
[12]
Grabner, M., Grabner, H., and Bischof, H. 2006. Fast Approximated SIFT. In Proceedings of 7th Asian Conference on Computer Vision, P. J. Narayanan, S. K. Nayar, H.--Y. Shum, Eds. Springer-Verlag, London, UK. 918--927.
[13]
Hammouda, K. M. and Kamel, M. S. 2004. Efficient phrase-based document indexing for web document clustering. IEEE Trans. Knowl. Data Engin. 16, 10, 1279--1296.
[14]
Hoiem, R., Sukthankar, H., Schneiderman, H., and Huston, L. 2004. Object-based image retrieval using the statistical structure of images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, DC. Vol. 2, 490--497.
[15]
Jansen, M. B. J., Spink, A., and Saracevic, T. 2000. Real life, real users, and real needs: A study and analysis of user queries on the web. Inform. Process. Manag. Int. J. 36, 2, 207--227.
[16]
Jin, R, Chai, J. Y., and Si, L. 2004. Effective automatic image annotation via a coherent language model and active learning. In Proceedings of 12th ACM International Conference on Multimedia. ACM Press, New York, 892--899.
[17]
Jing, F., Li, M., Zhang, H.-J., and Zhang, B. 2004, An efficient and effective region-based image retrieval framework. IEEE Trans. Image Process. 13, 5, 699--709.
[18]
Jurie, F. and Triggs, B. 2005. Creating efficient codebooks for visual recognition. In Proceedings of International Conference on Computer Vision. IEEE Computer Society, Washington, DC, Vol. 1, 604--610.
[19]
Ke, Y., Sukthankar, R., and Huston, L. 2004. Efficient near-duplicate detection and sub-image retrieval. In Proceedings of the 12th ACM International Conference on Multimedia. ACM Press, New York, NY. 869--876.
[20]
Kherfi, M. L., Ziou, D., and Bernardi, A. 2004. Image retrieval from the World Wide Web: Issues, techniques, and systems. ACM Comput. Surv. 36, 1, 35--67.
[21]
Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. 2006. Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimed. Comput. Comm. Appl. 2, 1, 1--19.
[22]
Li, J. and Wang, J. 2003. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Patt. Anal. Mach. Intell. 25, 9, 1075--1088.
[23]
Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91--110.
[24]
Luo, J. and Nascimento, M. 2003. Content based subimage retrieval via hierarchical tree matching. In Proceedings of the 1st ACM International Workshop on Multimedia Databases. ACM Press, New York. 63--69.
[25]
Marszalek, M. and Schmid, C. 2006. Spatial weighting for bag-of-features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, Washington, DC, Vol. 2, 2118--2125.
[26]
Mikolajczyk, K. and Schmid, C. 2005. A performance evaluation of local descriptors. IEEE Trans. Patt. Anal. Mach. Intell. 27, 10, 1615--1630.
[27]
Pantofaru, C., Dorko, G., Schmid, C., and Hebert, M. 2006. Combining regions and patches for object class localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop. IEEE Computer Society Press, Washington, DC. 23--30
[28]
Papageorgious, C., Oren, M., and Poggio, T. 1998. A general framework for object detection. In Proceedings of the 6th International Conference on Computer Vision. IEEE Computer Society, Washington, DC. 555--562.
[29]
Pentland, A., Picard, R. W., and Sclaroff, S. 1996. Photobook: Content-based manipulation of image databases. Int. J. Comput. Vision 18, 3, 233--254.
[30]
Rui, Y., Huang, T. S., and Chang, S.--F. 1999. Image retrieval: Current techniques, promising directions and open Issues. J. Visual Comm. Image Represent. 10, 1, 39--62.
[31]
Sebe, N., Lew, M., and Huijsmans, D. 1999. Multi-scale subimage search. In Proceedings of the 7th ACM International Conference on Multimedia. ACM Press, New York. 79--82.
[32]
Sivic, J. and Zisserman, A. 2003. Video Google: A text retrieval approach to object matching in videos. In Proceedings of the 9th IEEE International Conference on Computer Vision. IEEE Computer Society, Washington, DC. Vol. 2, 1470--1477.
[33]
Smeulders, A., Worring, M., Santini, S., Gupta, A., and Jain, R. 2000. Content-based image retrieval at the end of early years. IEEE Trans. Patt. Anal. Mach. Intell. 22, 12, 1349--1380.
[34]
Smith, J. R. and Chang, S.--F. 1996. Querying by color regions using the VisualSEEK content-based visual query system. In Intell. Multimed. Inform. Retri. Mark T. Maybury, Ed. AAAI Press, 23--42.
[35]
Smyth, W. F., Lam, C. P., Chen, X., and Maxville, V. 2003. Heuristics for image retrieval using spatial configurations. In Proceedings of the 7th Digital Image Computing: Techniques and Applications. Sydney. 909--918.
[36]
Squire, D., Muller, W., Muller, H., and Pun, T. 2000. Content-based visual query of image databases: Inspirations from text retrieval. Patt. Recogn. Lett. 21, 13--14, 1193--1198.
[37]
Sun, Z, Bebis, G., and Miller, R. 2006. On-road vehicle detection: A review. IEEE Trans. Patt. Anal. Mach. Intell. 28, 5, 694--711.
[38]
Sung, K.--K. and Poggio, T. 1998, Example-based learning for view-based face detection. IEEE Trans. Patt. Anal. Mach. Intell. 20, 1, 39--51.
[39]
Veltkamp, R. C. and Tanase, M. 2000. Content-based image retrieval systems: A survey. Utrecht University technical rep. UU-CS-2000-34.
[40]
Viola, P. and Jones, M. 2001. Rapid object detection using a boosted cascade of simple features. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, DC. 511--518.
[41]
Wang, G., Zhang, Y., and Li, F.-F. 2006. Using dependent regions for object categorization in generative framework. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, Washington, DC, Vol. 2, 1597--1604.
[42]
Williams, H. E., Zobel, J., and BAHLE, D. 2004. Fast phrase querying with combined indexes. ACM Trans. Inform. Syst. 22, 4, 573--594.
[43]
Winn, J., Criminisi, A., and Minka, T. 2005. Object categorization by learned universal visual dictionary. In Proceedings of 10th IEEE Conference on Computer Vision. IEEE Computer Society, Washington DC, Vol. 2, 1800--1807.
[44]
Witter, I. H., Moffat, A., and Bell, T. C. 1999. Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann, Los Altos, CA.
[45]
Yan, X., Yu, P. S., and Han, J. 2005. Graph indexing based on discriminative frequent structure analysis. ACM Trans. Datab. Syst. 30, 4, 960--993.
[46]
Yang, M.--H., Kriegman, D. J., and Ahuja, N. 2002. Detecting faces in images: A survey. IEEE Trans. Patt. Anal. Mach. Intell. 24, 1, 34--58.
[47]
Yeh, T., Tollmar, K., and Darrell, T. 2004. Searching the Web with mobile images for location recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, DC. Vol. 2, 76--81.
[48]
Zheng, Q.-F, Wang, W.-Q, and Gao, W. 2006. Effective and efficient object-based images retrieval using visual phrases. In Proceedings of the 14th ACM International Conference on Multimedia. ACM Press, New York. 77--80.

Cited By

View all
  • (2019)Feature Pair Index Graph for ClusteringJournal of Intelligent Systems10.1515/jisys-2018-033829:1(1179-1187)Online publication date: 15-Jan-2019
  • (2019)The Use of Ontology in Retrieval: A Study on Textual, Multilingual, and Multimedia RetrievalIEEE Access10.1109/ACCESS.2019.28978497(21662-21686)Online publication date: 2019
  • (2015)Parallel Massive Clustering of Discrete DistributionsACM Transactions on Multimedia Computing, Communications, and Applications10.1145/270029311:4(1-24)Online publication date: 2-Jun-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Multimedia Computing, Communications, and Applications
ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 5, Issue 1
October 2008
201 pages
ISSN:1551-6857
EISSN:1551-6865
DOI:10.1145/1404880
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 October 2008
Accepted: 01 December 2007
Revised: 01 May 2007
Received: 01 December 2006
Published in TOMM Volume 5, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Content-based image retrieval
  2. SIFT
  3. inverted index
  4. local image descriptor
  5. object-based image retrieval
  6. visual phrase

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Feature Pair Index Graph for ClusteringJournal of Intelligent Systems10.1515/jisys-2018-033829:1(1179-1187)Online publication date: 15-Jan-2019
  • (2019)The Use of Ontology in Retrieval: A Study on Textual, Multilingual, and Multimedia RetrievalIEEE Access10.1109/ACCESS.2019.28978497(21662-21686)Online publication date: 2019
  • (2015)Parallel Massive Clustering of Discrete DistributionsACM Transactions on Multimedia Computing, Communications, and Applications10.1145/270029311:4(1-24)Online publication date: 2-Jun-2015
  • (2014)Multilayer Semantic Analysis in Image DatabasesReal World Data Mining Applications10.1007/978-3-319-07812-0_19(387-414)Online publication date: 14-Nov-2014
  • (2014)Spatial Similarity Measure of Visual Phrases for Image RetrievalProceedings of the 20th Anniversary International Conference on MultiMedia Modeling - Volume 832610.1007/978-3-319-04117-9_25(275-282)Online publication date: 6-Jan-2014
  • (2012)Improving bag-of-visual-words model with spatial-temporal correlation for video retrievalProceedings of the 21st ACM international conference on Information and knowledge management10.1145/2396761.2398433(1303-1312)Online publication date: 29-Oct-2012
  • (2012)Object-based image retrieval with kernel on adjacency matrix and local combined featuresACM Transactions on Multimedia Computing, Communications, and Applications10.1145/2379790.23797968:4(1-18)Online publication date: 30-Nov-2012
  • (2012)Spatially-aware indexing for image object retrievalProceedings of the fifth ACM international conference on Web search and data mining10.1145/2124295.2124299(3-12)Online publication date: 8-Feb-2012
  • (2012)Effective near-duplicate image retrieval with image-specific visual phrase selection2012 19th IEEE International Conference on Image Processing10.1109/ICIP.2012.6467258(1909-1912)Online publication date: Sep-2012
  • (2012)Toward a higher-level visual representation for content-based image retrievalMultimedia Tools and Applications10.1007/s11042-010-0596-x60:2(455-482)Online publication date: 1-Sep-2012
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media