Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1411328.1411352acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article

On completeness of feature spaces in blind steganalysis

Published: 22 September 2008 Publication History

Abstract

Blind steganalyzers can be used for many diverse applications in steganography that go well beyond a mere detection of stego content. A blind steganalyzer can also be used for constructing targeted attacks or as an oracle for designing steganographic methods. The feature space itself provides a low-dimensional model of covers useful for benchmarking. These applications require the feature space to be complete in the sense that the features fully characterize the space of covers. Incomplete feature sets may skew benchmarking scores and lead to poor steganalysis. As a simple test of completeness, we propose a general approach for constructing steganographic methods that approximately preserve the whole feature vector and thus become practically undetectable by any steganalyzer that uses the same feature set. We demonstrate the plausibility of this approach, which we call the Feature Correction Method (FCM) by constructing the FCM for a 274-dimensional feature set from a state-of-the-art blind steganalyzer for JPEG images.

References

[1]
I. Avcibas, M. Kharrazi, N. D. Memon, and B. Sankur. Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing, 17:2749--2757, 2005.
[2]
I. Avcibas, N. D. Memon, and B. Sankur. Steganalysis using image quality metrics. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents III, volume 4314, pages 523--531, San Jose, CA, January 22-25, 2001.
[3]
I. Avcibas, N. D. Memon, and B. Sankur. Image steganalysis with binary similarity measures. In Proceedings IEEE, International Conference on Image Processing, ICIP 2002, volume 3, pages 645--648, Rochester, NY, September 22-25, 2002.
[4]
C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information Hiding, 2nd International Workshop, volume 1525 of Lecture Notes in Computer Science, pages 306--318, Portland, OR, April 14-17, 1998. Springer-Verlag, New York.
[5]
S. Dumitrescu, X. Wu, and Z. Wang. Detection of LSB steganography via sample pair analysis. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578 of Lecture Notes in Computer Science, pages 355--372, Noordwijkerhout, The Netherlands, October 7-9, 2002. Springer-Verlag, New York.
[6]
H. Farid and L. Siwei. Detecting hidden messages using higher-order statistics and support vector machines. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578 of Lecture Notes in Computer Science, pages 340--354, Noordwijkerhout, The Netherlands, October 7-9, 2002. Springer-Verlag, New York.
[7]
E. Franz. Steganography preserving statistical properties. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578 of Lecture Notes in Computer Science, pages 278--294, Noordwijkerhout, The Netherlands, October 7-9, 2002. Springer-Verlag, New York.
[8]
J. Fridrich. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In J. Fridrich, editor, Information Hiding, 6th International Workshop, volume 3200 of Lecture Notes in Computer Science, pages 67--81, Toronto, Canada, May 23-25, 2004. Springer-Verlag, New York.
[9]
J. Fridrich and M. Goljan. On estimation of secret message length in LSB steganography in spatial domain. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306, pages 23--34, San Jose, CA, January 19-22, 2004.
[10]
J. Fridrich, M. Goljan, D. Hogea, and D. Soukal. Quantitative steganalysis of digital images: Estimating the secret message length. ACM Multimedia Systems Journal, 9(3):288--302, 2003.
[11]
J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. ACM Multimedia System Journal, 11(2):98--107, 2005.
[12]
J. Fridrich, M. Goljan, and D. Soukal. Wet paper codes with improved embedding efficiency. IEEE Transactions on Information Forensics and Security, 1(1):102--110, 2006.
[13]
J. Fridrich, T. Pevný, and J. Kodovský. Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities. In J. Dittmann and J. Fridrich, editors, Proceedings of the 9th ACM Multimedia & Security Workshop, pages 3--14, Dallas, TX, September 20-21, 2007.
[14]
M. Goljan, J. Fridrich, and T. Holotyak. New blind steganalysis and its implications. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, volume 6072, pages 1--13, San Jose, CA, January 16-19, 2006.
[15]
J. J. Harmsen and W. A. Pearlman. Steganalysis of additive noise modelable information hiding. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents V, volume 5020, pages 131--142, Santa Clara, CA, January 21-24, 2003.
[16]
S. Hetzl and P. Mutzel. A graph-theoretic approach to steganography. In J. Dittmann, S. Katzenbeisser, and A. Uhl, editors, Communications and Multimedia Security, 9th IFIP TC-6 TC-11 International Conference, CMS 2005, volume 3677 of Lecture Notes in Computer Science, pages 119--128, Salzburg, Austria, September 19-21, 2005.
[17]
A. D. Ker. A general framework for structural analysis of LSB replacement. In M. Barni, J. Herrera, S. Katzenbeisser, and F. Pérez-González, editors, Information Hiding, 7th International Workshop, volume 3727 of Lecture Notes in Computer Science, pages 296--311, Barcelona, Spain, June 6-8, 2005. Springer-Verlag, Berlin.
[18]
A. D. Ker. Steganalysis of LSB matching in grayscale images. IEEE Signal Processing Letters, 12(6):441--444, June 2005.
[19]
M. Kharrazi, H. T. Sencar, and N. D. Memon. Benchmarking steganographic and steganalytic techniques. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pages 252--263, San Jose, CA, January 16-20, 2005.
[20]
Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique for minimal distortion steganography. In J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee, editors, Information Hiding, 8th International Workshop, volume 4437 of Lecture Notes in Computer Science, pages 314--327, Alexandria, VA, July 10-12, 2006. Springer-Verlag, New York.
[21]
J. Kodovský and J. Fridrich. Influence of embedding strategies on security of steganographic methods in the JPEG domain. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, pages 2 1--2 13, San Jose, CA, January 27--31, 2008.
[22]
S. Lyu and H. Farid. Steganalysis using color wavelet statistics and one-class support vector machines. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306, pages 35--45, San Jose, CA, January 19-22, 2004.
[23]
S. Lyu and H. Farid. Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security, 1(1):111--119, 2006.
[24]
Y. Miche, B. Roue, A. Lendasse, and P. Bas. A feature selection methodology for steganalysis. In B. Günsel, A. K. Jain, A. M. Tekalp, and B. Sankur, editors, Multimedia Content Representation, Classification and Security, International Workshop, volume 4105 of Lecture Notes in Computer Science, pages 49--56, Istanbul, Turkey, September 11-13, 2006. Springer-Verlag.
[25]
H. Noda, M. Niimi, and E. Kawaguchi. Application of QIM with dead zone for histogram preserving JPEG steganography. In Proceedings IEEE, International Conference on Image Processing, ICIP 2005, pages II - 1082--5, Genova, Italy, September 11-14, 2005.
[26]
A. Orsdemir, H. O. Altun, G. Sharma, and M. F. Bocko. Steganalysis-aware steganography: Statistical indistinguishability despite high distortion. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, volume 6819, pages 15 1--15 9, San Jose, CA, January 27-31, 2008.
[27]
T. Pevný and J. Fridrich. Towards multi-class blind steganalyzer for JPEG images. In M. Barni, I. J. Cox, T. Kalker, and H. J. Kim, editors, International Workshop on Digital Watermarking, volume 3710 of Lecture Notes in Computer Science, Siena, Italy, September 15-17, 2005. Springer-Verlag, Berlin.
[28]
T. Pevný and J. Fridrich. Merging Markov and DCT features for multi-class JPEG steganalysis. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, volume 6505, pages 3 1--3 14, San Jose, CA, January 29 - February 1, 2007.
[29]
N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium, pages 323--335, Proceedings of the ACM Symposium on Applied Computing, August 13-17, 2001.
[30]
P. Sallee. Model-based methods for steganography and steganalysis. International Journal of Image Graphics, 5(1):167--190, 2005.
[31]
A. Sarkar, K. Solanki, and B. S. Manjunath. Further study on YASS: Steganography based on randomized embedding to resist blind steganalysis. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, pages 16--31, San Jose, CA, January 27-31, 2008.
[32]
Y. Q. Shi, C. Chen, and W. Chen. A Markov process based approach to effective attacking JPEG steganography. In J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee, editors, Information Hiding, 8th International Workshop, volume 4437 of Lecture Notes in Computer Science, pages 249--264, Alexandria, VA, July 10-12, 2006. Springer-Verlag, New York.
[33]
K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another steganographic scheme that resists blind steganalysis. In T. Furon, F. Cayre, G. Doërr, and P. Bas, editors, Information Hiding, 9th International Workshop, Lecture Notes in Computer Science, pages 16--31, Saint Malo, France, June 11-13, 2007. Springer-Verlag, New York.
[34]
K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Provably secure steganography: Achieving zero K--L divergence using statistical restoration. In Proceedings IEEE, International Conference on Image Processing, ICIP 2006, pages 125--128, Atlanta, GA, October 8-11, 2006.
[35]
R. Tzschoppe, R. Bäuml, J. B. Huber, and A. Kaup. Steganographic system based on higher-order statistics. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents V, volume 5020, pages 156--166, Santa Clara, CA, January 21-24, 2003.
[36]
Y. Wang and P. Moulin. Statistical modelling and steganalysis of DFT-based image steganography. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, volume 6072, pages 2 1--2 11, San Jose, CA, January 16-19, 2006.
[37]
A. Westfeld. High capacity despite better steganalysis (F5 - a steganographic algorithm). In I. S. Moskowitz, editor, Information Hiding, 4th International Workshop, volume 2137 of Lecture Notes in Computer Science, pages 289--302, Pittsburgh, PA, April 25-27, 2001. Springer-Verlag, New York.
[38]
A. Westfeld and R. Böhme. Exploiting preserved statistics for steganalysis. In J. Fridrich, editor, Information Hiding, 6th International Workshop, volume 3200 of Lecture Notes in Computer Science, pages 82--96, Toronto, Canada, May 23-25, 2004. Springer-Verlag, Berlin.
[39]
G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, Z. Z. P. Chai, C. Chen, and W. Chen. Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In M. Barni, J. Herrera, S. Katzenbeisser, and F. Pérez-González, editors, Information Hiding, 7th International Workshop, volume 3727 of Lecture Notes in Computer Science, pages 262--277, Barcelona, Spain, June 6-8, 2005. Springer-Verlag, Berlin.

Cited By

View all
  • (2024)Image Steganography Approaches and Their Detection Strategies: A SurveyACM Computing Surveys10.1145/369496557:2(1-40)Online publication date: 10-Oct-2024
  • (2024)Minimizing Distortion in Data Embedding Using LDGM Codes and the Cavity Method2024 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT57864.2024.10619127(226-231)Online publication date: 7-Jul-2024
  • (2022)Secure Halftone Image Steganography Based on Feature Space and Layer EmbeddingIEEE Transactions on Cybernetics10.1109/TCYB.2020.302604752:6(5001-5014)Online publication date: Jun-2022
  • Show More Cited By

Index Terms

  1. On completeness of feature spaces in blind steganalysis

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MM&Sec '08: Proceedings of the 10th ACM workshop on Multimedia and security
    September 2008
    242 pages
    ISBN:9781605580586
    DOI:10.1145/1411328
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 September 2008

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. blind steganalysis
    2. completeness
    3. fcm
    4. steganography

    Qualifiers

    • Research-article

    Conference

    MM&Sec '08
    Sponsor:
    MM&Sec '08: Multimedia and Security Workshop
    September 22 - 23, 2008
    Oxford, United Kingdom

    Acceptance Rates

    Overall Acceptance Rate 128 of 318 submissions, 40%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Image Steganography Approaches and Their Detection Strategies: A SurveyACM Computing Surveys10.1145/369496557:2(1-40)Online publication date: 10-Oct-2024
    • (2024)Minimizing Distortion in Data Embedding Using LDGM Codes and the Cavity Method2024 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT57864.2024.10619127(226-231)Online publication date: 7-Jul-2024
    • (2022)Secure Halftone Image Steganography Based on Feature Space and Layer EmbeddingIEEE Transactions on Cybernetics10.1109/TCYB.2020.302604752:6(5001-5014)Online publication date: Jun-2022
    • (2021)Secure Robust JPEG Steganography Based on AutoEncoder With Adaptive BCH EncodingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2020.302784331:7(2909-2922)Online publication date: Jul-2021
    • (2020)On More Paradigms of SteganalysisCyber Warfare and Terrorism10.4018/978-1-7998-2466-4.ch045(723-740)Online publication date: 2020
    • (2020)Turning Cost-Based Steganography into Model-BasedProceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security10.1145/3369412.3395065(151-159)Online publication date: 22-Jun-2020
    • (2019)A Steganographic Approach to Sonar TrackingIEEE Journal of Oceanic Engineering10.1109/JOE.2018.284716044:4(1213-1227)Online publication date: Oct-2019
    • (2019)Compressive sensing based secret signals recovery for effective image Steganalysis in secure communicationsMultimedia Tools and Applications10.1007/s11042-018-6065-778:20(29381-29394)Online publication date: 1-Oct-2019
    • (2018)On Improving Distortion Functions for JPEG SteganographyIEEE Access10.1109/ACCESS.2018.28841986(74917-74930)Online publication date: 2018
    • (2018)Improving image steganalyser performance through curvelet transform denoisingCluster Computing10.1007/s10586-017-1500-5Online publication date: 8-Jan-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media