Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1526709.1526758acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Learning to tag

Published: 20 April 2009 Publication History

Abstract

Social tagging provides valuable and crucial information for large-scale web image retrieval. It is ontology-free and easy to obtain; however, irrelevant tags frequently appear, and users typically will not tag all semantic objects in the image, which is also called semantic loss. To avoid noises and compensate for the semantic loss, tag recommendation is proposed in literature. However, current recommendation simply ranks the related tags based on the single modality of tag co-occurrence on the whole dataset, which ignores other modalities, such as visual correlation. This paper proposes a multi-modality recommendation based on both tag and visual correlation, and formulates the tag recommendation as a learning problem. Each modality is used to generate a ranking feature, and Rankboost algorithm is applied to learn an optimal combination of these ranking features from different modalities. Experiments on Flickr data demonstrate the effectiveness of this learning-based multi-modality recommendation strategy.

References

[1]
E. Akbas and F. Yarman Vural. Automatic image annotation by ensemble of visual descriptors. CVPR'07., June 2007.
[2]
M. Ames and M. Naaman. Why we tag: motivations for annotation in mobile and online media. In CHI'07, 2007.
[3]
J. Amores, N. Sebe, and P. Radeva. Context--based object-class recognition and retrieval by generalized correlograms. IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1818--1833, 2007.
[4]
Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine's index. In WWW '06 Proceedings, 2006.
[5]
J. Blythe and Y. Gil. Incremental formalization of document annotations through ontology-based paraphrasing. In WWW '04, 2004.
[6]
S. Boll, P. Sandhaus, A. Scherp, and U. Westermann. Semantics, content, and structure of many for the creation of personal photo albums. In Proceedings of ACM Multimedia '07, 2007.
[7]
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. In Proceedings of ICML'98, 1998.
[8]
G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos. Query workload--aware overlay construction using histograms. In Proceedings of CIKM '05, 2005.
[9]
H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp: Parallel fp-growth for query recommendation. In ACM Recommendation Systems, Lausanne, 2008.
[10]
X. Li, C. G. Snoek, and M. Worring. Learning tag relevance by neighbor voting for social image retrieval. In Proceedings of MIR '08, 2008.
[11]
J. Liu, B. Wang, M. Li, Z. Li, W. Ma, H. Lu, and S. Ma. Dual cross-media relevance model for image annotation. In Multimedia'07, 2007.
[12]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning, 2008.
[13]
M. Naaman and R. Nair. Zonetag's collaborative tag suggestions: What is this person doing in my phone?. In IEEE Multimedia, 2008.
[14]
G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang. Correlative multi-label video annotation. In Proceedings of ACM Multimedia'07, 2007.
[15]
Y. Qi, K. S. Candan, J. Tatemura, S. Chen, and F. Liao. Supporting olap operations over imperfectly integrated taxonomies. In SIGMOD'08 Conference, 2008.
[16]
X. Rui, M. Li, Z. Li, W.-Y. Ma, and N. Yu. Bipartite graph reinforcement model for web image annotation. In Multimedia'07, 2007.
[17]
S. Sen, S. K. Lam, A. M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse, F. M. Harper, and J. Riedl. tagging, communities, vocabulary, evolution. In CSCW '06, 2006.
[18]
B. Sigurbjornsson and R. van Zwol. Flickr tag recommendation based on collective knowledge. In WWW '08, 2008.
[19]
C. G. M. Snoek, B. Huurnink, L. Hollink, M. D. Rijke, G. Schreiber, and M. Worring. Adding semantics to detectors for video retrieval. IEEE Transactions on Multimedia, 9, 2007.
[20]
C. Wang, F. Jing, L. Zhang, and H.-J. Zhang. Content-based image annotation refinement. Proceedings of CVPR 07, 2007.
[21]
L. Wu, X.-S. Hua, N. Yu, W.-Y. Ma, and S. Li. Flickr distance. Proceedings of ACM Multimedia'08, 2008.
[22]
L. Wu, M. Li, Z. Li, W.-Y. Ma, and N. Yu. Visual language modeling for image classification. Proceedings of MIR'07, 2007.
[23]
R. Yan and A. Hauprmann. Query expansion using probabilistic local feedback with application to multimedia retrieval. In Proceedings of CIKM '07, 2007.
[24]
J. Yu, J. Amores, N. Sebe, P. Radeva, and Q. Tian. Distance learning for similarity estimation. IEEE Trans. Pattern Anal. Mach. Intell., 30(3):451--462, 2008.
[25]
Y.-T. Zheng, S.-Y. Neo, T.-S. Chua, and Q. Tian. Visual synset: towards a higher-level visual representation. In Proceedings of CVPR'08, 2008.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '09: Proceedings of the 18th international conference on World wide web
April 2009
1280 pages
ISBN:9781605584874
DOI:10.1145/1526709

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 April 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. learning to tag
  2. multi-modality rankboost
  3. social tagging
  4. tag recommendation

Qualifiers

  • Research-article

Conference

WWW '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)2
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Relevant Tag Extraction Based on Image Visual ContentApplied Intelligence10.1007/978-981-97-0827-7_25(283-295)Online publication date: 1-Mar-2024
  • (2022)Deep Enhanced Weakly-Supervised Hashing With Iterative Tag RefinementIEEE Transactions on Multimedia10.1109/TMM.2021.308735624(2779-2790)Online publication date: 2022
  • (2020)Tagging and Tag RecommendationCyberspace10.5772/intechopen.82242Online publication date: 17-Jun-2020
  • (2020)Reference-based model using multimodal gated recurrent units for image captioningMultimedia Tools and Applications10.1007/s11042-020-09539-5Online publication date: 15-Aug-2020
  • (2020)Exploiting user reviews for automatic movie taggingMultimedia Tools and Applications10.1007/s11042-019-08513-0Online publication date: 6-Jan-2020
  • (2020)Graph‐based tag recommendations using clusters of patients in clinical decision support systemConcurrency and Computation: Practice and Experience10.1002/cpe.562433:1Online publication date: 6-Jan-2020
  • (2019)Long-tail Hashtag Recommendation for Micro-videos with Graph Convolutional NetworkProceedings of the 28th ACM International Conference on Information and Knowledge Management10.1145/3357384.3357912(509-518)Online publication date: 3-Nov-2019
  • (2019)TPP: Tradeoff Between Personalization and PrivacyProceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM) 201910.1007/978-3-030-19063-7_54(672-681)Online publication date: 23-May-2019
  • (2018)Multimodal Semantics and Affective Computing from Multimedia ContentIntelligent Multidimensional Data and Image Processing10.4018/978-1-5225-5246-8.ch014(359-382)Online publication date: 2018
  • (2018)User Tagging in MOOCs Through Network Embedding2018 IEEE Third International Conference on Data Science in Cyberspace (DSC)10.1109/DSC.2018.00041(235-241)Online publication date: Jun-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media