Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1553374.1553455acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

ABC-boost: adaptive base class boost for multi-class classification

Published: 14 June 2009 Publication History

Abstract

We propose abc-boost (adaptive base class boost) for multi-class classification and present abc-mart, an implementation of abc-boost, based on the multinomial logit model. The key idea is that, at each boosting iteration, we adaptively and greedily choose a base class. Our experiments on public datasets demonstrate the improvement of abc-mart over the original mart algorithm.

References

[1]
Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. J. of Machine Learning Research, 1, 113--141.
[2]
Bartlett, P., Freund, Y., Lee, W. S., & Schapire, R. E. (1998). Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651--1686.
[3]
Cossock, D., & Zhang, T. (2006). Subset ranking using regression. Conf. on Learning Theory, 605--619.
[4]
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Inf. Comput., 121, 256--285.
[5]
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55, 119--139.
[6]
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29, 1189--1232.
[7]
Friedman, J. H., Hastie, T. J., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28, 337--407.
[8]
Lee, Y., Lin, Y., & Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. J. of Amer. Stat. Asso., 99, 67--81.
[9]
Li, P., Burges, C. J., & Wu, Q. (2008). Mcrank: Learning to rank using classification and gradient boosting. Neur. Inf. Proc. Sys. Conf. 897--904.
[10]
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. Neur. Inf. Proc. Sys. Conf. 512--518.
[11]
Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197--227.
[12]
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297--336.
[13]
Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39, 135--168.
[14]
Tewari, A., & Bartlett, P. L. (2007). On the consistency of multiclass classification methods. J. of Machine Learning Research, 8, 1007--1025.
[15]
Zhang, T. (2004). Statistical analysis of some multi-category large margin classification methods. J. of Machine Learning Research, 5, 1225--1251.
[16]
Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G. (2008). A General Boosting Method and its Application to Learning Ranking Functions for Web Search Neur. Inf. Proc. Sys. Conf. 1697--1704.
[17]
Zou, H., Zhu, J., & Hastie, T. (2008). New multi-category boosting algorithms based on multicategory fisher-consistent losses. The Annals of Applied Statistics, 2, 1290--1306.

Cited By

View all
  • (2024)Multi-Branch Line Fault Arc Detection Method Based on the Improved Northern Goshawk Optimization Adaptive Base Class LogitBoost AlgorithmEnergies10.3390/en1704095417:4(954)Online publication date: 19-Feb-2024
  • (2024)Condensed-gradient boostingInternational Journal of Machine Learning and Cybernetics10.1007/s13042-024-02279-0Online publication date: 23-Jul-2024
  • (2022)Bio-Signals in Medical Applications and Challenges Using Artificial IntelligenceJournal of Sensor and Actuator Networks10.3390/jsan1101001711:1(17)Online publication date: 25-Feb-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
June 2009
1331 pages
ISBN:9781605585161
DOI:10.1145/1553374

Sponsors

  • NSF
  • Microsoft Research: Microsoft Research
  • MITACS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

ICML '09
Sponsor:
  • Microsoft Research

Acceptance Rates

Overall Acceptance Rate 140 of 548 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Multi-Branch Line Fault Arc Detection Method Based on the Improved Northern Goshawk Optimization Adaptive Base Class LogitBoost AlgorithmEnergies10.3390/en1704095417:4(954)Online publication date: 19-Feb-2024
  • (2024)Condensed-gradient boostingInternational Journal of Machine Learning and Cybernetics10.1007/s13042-024-02279-0Online publication date: 23-Jul-2024
  • (2022)Bio-Signals in Medical Applications and Challenges Using Artificial IntelligenceJournal of Sensor and Actuator Networks10.3390/jsan1101001711:1(17)Online publication date: 25-Feb-2022
  • (2021)Efficient Learning to Learn a Robust CTR Model for Web-scale Online Sponsored Search AdvertisingProceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3481912(4203-4213)Online publication date: 26-Oct-2021
  • (2020)Improved Touch-screen Inputting Using Sequence-level Prediction GenerationProceedings of The Web Conference 202010.1145/3366423.3380080(3077-3083)Online publication date: 20-Apr-2020
  • (2019)MONOPOLY: Learning to Price Public Facilities for Revaluing Private Properties with Large-Scale Urban DataProceedings of the 28th ACM International Conference on Information and Knowledge Management10.1145/3357384.3357810(2655-2663)Online publication date: 3-Nov-2019
  • (2019)Large Scale Semantic Indexing with Deep Level-wise Extreme Multi-label LearningThe World Wide Web Conference10.1145/3308558.3313636(950-960)Online publication date: 13-May-2019
  • (2018)Multi-class HingeBoostMethods of Information in Medicine10.3414/ME11-02-002051:02(162-167)Online publication date: 19-Jan-2018
  • (2018)Representation Learning for Question Classification via Topic Sparse Autoencoder and Entity Embedding2018 IEEE International Conference on Big Data (Big Data)10.1109/BigData.2018.8622331(126-133)Online publication date: Dec-2018
  • (2016)Improved and Scalable Bradley-Terry Model for Collaborative Ranking2016 IEEE 16th International Conference on Data Mining (ICDM)10.1109/ICDM.2016.0118(949-954)Online publication date: Dec-2016
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media