Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1576702.1576717acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Liouvillian solutions of irreducible linear difference equations

Published: 28 July 2009 Publication History

Abstract

In this paper we give a new algorithm to compute Liouvillian solutions of linear difference equations. Compared to the prior algorithm by Hendriks and Singer, our main contribution consists of two theorems that significantly reduce the number of combinations that the algorithm will check.

References

[1]
S. A. Abramov, M. A. Barkatou, M. van Hoeij, Apparent Singularities of Linear Difference Equations with Polynomial Coefficients, AAECC, 17, p. 117--133, (2006).
[2]
S. A. Abramov, M. A. Barkatou, D. E. Khmelnov, On m-Interlacing Solutions of Linear Difference Equations, preprint (2009).
[3]
S. A. Abramov and M. Bronstein, On solutions of linear functional systems, ISSAC'2001, p. 1--6, (2001).
[4]
M. A. Barkatou, Rational Solutions of Matrix Difference Equations: The Problem of Equivalence and Factorization, ISSAC'1999, p. 277--282, (1999).
[5]
R. Bomboy, Réductibilité et résolubilité des équations aux différences finies, PhD thesis, (2001). www-sop.inria.fr/cafe/personnel/Raphael.Bomboy
[6]
Y. Cha, M. van Hoeij, Implementation for Tausqsols, www.math.fsu.edu/~hoeij/files/DifferenceLiouv(2008).
[7]
T. Cluzeau, M. van Hoeij, Computing hypergeometric solutions of linear difference equations, AAECC, 17(2), p. 83--115, (2006).
[8]
R. Feng, M. F. Singer, M. Wu, Liouvillian Solutions of Linear Difference-Differential Equations, preprint, arXiv:0810.1574v1, (2008).
[9]
P. A. Hendriks, M. F. Singer, Solving difference equations in finite terms, J. Symbolic Comput, 27, p. 239--259, (1999).
[10]
M. van Hoeij, Finite singularities and hypergeometric solutions of linear recurrence equations, J. Pure Appl. Algebra, 139, p. 109--131, (1999).
[11]
D. Khmelnov, Search for Liouvillian solutions of linear recurrence equations in the MAPLE computer algebra system, Programming and Computer Software, 34, No. 4, p. 204--209, (2008).
[12]
M. Petkovšek, Hypergeometric solutions of linear difference equations with polynomial coefficients, J. Symbolic Comput., 14, p. 243--264, (1992).
[13]
M. van der Put, M. F. Singer, Galois Theory of Difference Equations, Springer-Verlag, 1666, Lecture Notes in Mathematics, (1997).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
July 2009
402 pages
ISBN:9781605586090
DOI:10.1145/1576702
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 July 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. difference equations
  2. liouvillian solutions

Qualifiers

  • Research-article

Conference

ISSAC '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media